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In this study we investigated a class of alternative gravity theories called scalar-tensor theories
and a phenomenon called spontenous scalarization that occurs in certain scalar-tensor theories.
More specifically, we derived field equation and the corresponding Tolman—Oppenheimer—Volkoff
(TOV) equations equations for the massive scalar-tensor theory and compared it with the General
Relativity (GR). In addition, necessary tools for numerical analysis such as C and C++ are studied.

I. INTRODUCTION

In General Relativity (GR), the metric ¢ is the only
dynamical field and there are no arbitrary functions nor
parameters other than the Newtonian coupling constant
G. The equation of motions can be obtained (see Ap-
pendix [Bf) from the following action

S = /d4x\/—g(R+ L)
which are
1
R, — §R9W =81GT .,

In scalar Tensor Theories, in addition to the metric field g
we have one or several scalar field ¢ coupled to curvature
scalar R and the action takes the form

s=J deg(f(w)R ()" (00) (D) — V() + Lt (G wm)

where the functions f,h and V defines the theory and mat-
ter langrangian depends only on the metric and matter
fields. One of the earliest example is the Brans-Dicke
theory and corresponds to ([1])

o) =—- h(p) = ﬁ

A common approach to scalar-tensor theories to perform
a conformal transformation to the action by defining a
conformal metric

i 1
§= ————Guw
167 f ()"

where we used ~ to denote the old metric (Jordan Frame).
And we end up with following action

S = (16wG)—1fd4x\/?g[R— ggp"f_2<(‘ii£>2(8p )(a(,@)} (2, 3)

This frame called Einstein frame and will be shown with-
out = We will be working on this frame throughout this

paper.

II. SPONTANEOUS SCALARIZATION
A. Massless Scalar Field

The action for the scalar tensor theories for one arbi-
trary coupling function A(y) can be written as in [2]
1
S =
167G

where g being the Einstein metric and related to Jordan
metric as

(S + Sp) + Smlvoar, A*(0)g] (1)

Juv = A2g;w (2)

As noted earlier, even though the metric g is the one
we measure in experiments it is easier the formulate the
theory in Einstein frame.

From equation we end up with the following field

equations (see Appendix )

1
Ry =20,00,0 + 871G (T — 5Tgu0) (3a)
Op = — 4nGa(p)T (3b)

where T = 2,/g6Snr /09, is the stress energy ten-
sor and o = 91ln A/J¢p is the coupling strength between
scalar field between scalar and matter fields.

Now, consider the the static case where A(¢p) = ef¢”/2
and [ is a negative constant. If we neglect the gravita-
tional field and nonlinear terms in ¢ we can write the

equation [3b] as
Op = —4nxT By

where we write in terms of the physical energy-
momentum tensor (to see the transformation see Ap-
pendix and take G = 1 for simplicity. Assuming
nonrelativistic matter, i.e. p > p, therefore, T ~ -p,
then we have

Ap = 4mpfByp (4)

Then, setting k> = Bp we have the following solutions

AM, r<R (52)
% +¢0, T>R (5b)



where R is the radius of the star and A and M is con-
stant. And the continuity condition of ¢ and ¢’ at the R
gives

_ (44
A= kcos(kR)’ (6a)
M = o[k~ tan(kR) — R]. (6b)

From this it can be seen that as KR — 7/2, ¢ and M
greatly increases, i.e. Spontaneous Scalarization occurs

(3))-

B. Massive Scalar Field

For the massive scalar field we still can write the action
in the form of equation [I| with the addition of the mass
term to S, as ([4])

1
S =157 [ VIR ~ 200,600 — m*5? + L]
(7)

which gives the equation of motions as (see Appendix

)

1
R, =20,00,¢ + m2g02gm, +81(Tp — §Tgm,) (8a)
Op = — 4na(p)T +m?¢ (8b)

Now consider the same case with A = %" where [ is a
negative constant. We again write equation using the jor-
dan frame energy-momentum tensor as before (Appendix

A).
o = — 471'Be25“‘°2 oT +m?¢

Note that, ¢ = 0 is the GR solution. Perturbating
around this solution and expanding to linear order and
with the assumption of nonrelativistic matter we have

Ap = (47Bp+m?) (9)

which is very similar to what we had in equation
Therefore, with a similar approach we can argue that
Spontaneous Scalarization occurs with similar solutions.
Or following the discussion in [4], the first term on the
right in equation [J]is effectively a negative mass-squared
term. Therefore, equation suffers a tachyon instability.
This equation has the solutions of the form for r < R
ikr ikr

e
C
r+2kr

@ 01 (10)

where we defined k = QT’T = \/47mBp + m?2. Therefore we
have an instability if m? < 47 8|p| = A, > Ay where

Aeff = \/ﬁ (11)

Hence, all fourier modes with wavelength A >
)\eff/\/l — (/\eff/ALp)2 with Aesr < /\Lp will initially ex-
perience an exponential growth. However the ¢20%° term
will initial take over at order of 1/4/|8].

For a star we can write approximalty p ~ M/R?, then,

L (12)

Velal

where C' = 2M/R is the compactness of the star. Also,
for spontenous scalarization to occur, we must have
Aeff < Ay and shortest unstable mode must fit in the
star, i.e. Aegr < R, therefore, for given 3 only the stars
that have

Aeff,star o

cz1/1p (13)

can scalarize.

One other way the look at the spontenious scalariza-
tion scenario is the write the field equation for ¢ as in
5]

He = 0,Veps(p) =0 (14)

where we define the effective potential V.s¢(¢) and make
the same assumptions as before but we choose A?(p) =
1— €+ ee?®’/2M? just to be able to integrate Vs easily.
But as shown before the same scenario aplies for other
functions too. Then we have the following effective po-
tential

1

14 —e+ee” /M) (15)

1
Vers(p) = §m2¢2 +
For uniform p system is static and scalar field ¢ takes
a constant value that minimizes the effective potential
Taylor expanding the effective potential around ¢ = 0
gives

1. 1 €p
Ve =—p+-|m’— 2+ 0(p* 16
77(®) 4p+2<m 2M2)<p +0(¢7)  (16)
It can be seen that ¢ = 0 is stable for p < ppr =
2m?2M? /e and unstable otherwise . And it takes the form

(B)

2 -1
@ 2¢ de(ppr)
=1 1+ ——5-1
202 n{l—e( T —o2
Therefore, ¢ proportional to p logarithmically. There-
fore, if p doesn’t takes extremely high values ¢ is order
of M, hence, scalar field scalarized when p < ppr.

III. TOV EQUATIONS IN SCALAR-TENSOR
THEORIES

Tolman—Oppenheimer—Volkoff (TOV) equations are
the hydrostatic equilibrium equations for spherically



symmetric bodies, in other words, stars.
take the form

In GR they

m' = 4mwr?p
;omt 4tr3p
r(r — 2m)

, m + 4nr3p

P = (p+p):—1(p+p)1/

r(r —2m) 2

with the metric
9 -1
ds? = —e"Wde? 4 (1 - m(r)) dr? + 1r2dQ>
r

In the following chapters, we will derive the corre-
sponding TOV equations for scalar-tensor theories.

A. TOV Equations in Massless Scalar-Tensor
Theories

The spherically symmetric, static metric, generated by
an isolated, non-rotating neutron star can be written in
Einstein Frame as|[2)

2u(r)

ds? = —e’(Mdt? + (1 -

And the stress energy tensor in Jordan frame T takes
the perfect fluid form as

T = (e+p)a'a” +pg” (17)

or in matrix form

eTVEAT? 0 0 0
2 \ s 42
v _ 0 (1 — T‘,‘)pA 0 0
0 0 SPA~? 0
Calculating the trace we get
TPV, =T = —&+ 3p (18)

Similarly, in Einstein frame, we have T* = T A% from
which we can get

T = A*(—¢+3p) = AT (19)

We will also write the energy momentum tensor in Ein-
stein frame for future references

eV EA* 0 0 0
-1
2 ~ A4
T. _ 0 ( — f) pA 0 0
0 0 r2pA4
0 0 0 rZsin?0pAt

-1
) dr® + r2(d6? + sin*0d¢?)

Now, with the help of Mathematica we find (¢t) and (rr)
components of the corresponding Einstein tensor to be

2e” 11/

Gtt =
r2
/

v 2u

Grr = — - m (20)

where prime denotes derivative with respect to r (i.e.

d/dr).

1. u(r) Equation

We start by writing the (¢t) component of the equation
(C3). Note that since we are dealing with spherically
symmetric and static system, there is only r dependence

in ¢.
Gtt = — gttg”pagcpapga + 2815@615@ + 87TGTtt
2€V,LL/ B

e’ (1 — 2”)1/;2 + 8rGA*e e
T

-2
w :%r(r —2u)? + AnGriAte (21)

where we defined 1) = ¢’.

2. v(r) Equation

Similarly for (rr) component writing the equation we
have:
/

Grr=— grrg”paosﬁap<ﬂ + 20,00 + SWGTTTZL
r
(22)

2 2p\ AN
(1:‘) (1;‘) 1/)2+2z/12+87rGA4]5(1:L>

2u
r2(r — 2u)
Notice that the second term in right hand side did not
vanish.

2
V' =8nGA*— Ly 4 (23)
r—2u

3. (r) Equation

Now, we write down the equation (C9)), recalling
Op = — 4nGa(e)T
"'V Vi = — ArGa A (=€ + 3p)

calculating the left hand side gives (writing only nonzero
Christoffel symbols)

QWV;LVVSD :nguat/@
:g“yauayﬁp — Ffwak@

2u
r2(r —2p)

=g 02— g"" 7.0, — ¢"T40, — g"'T7,0, — 9?1740,
—_—— Y—— Y—— Y=

I II II1 v

\%



—2u
r

Iy — — -

1V =

sults
I :><T )w’
— 2
2r ¥

Calculating each term one by one gives the following re-
p—ry
1] = — < 2 )w
r2 v
—v'(r —2u)
r—2U
2

V= -

r

Putting all these together yields

-2
guvvuvy(p:<7" M)’(//‘i‘ (:u

Vir—2 r—2
( u)¢+ 2u
2r

r2

(G

r

Y = (47rGaA4(€ —3p) + 4rGrA* (e — p)y —

A4
=ArG "

Which is the equation for .

4. p(r) Equation

Here we will use stress energy balance equation instead
of (#0) equation. Therefore we have
V,.T" =0

=0, T +Th T + TV, T (27)

J

P THr =0, T 4 B 77 4 P, T

5 (-3 + rote =) -

In order to find an expression for 1) we substitute p’ and
V' from equations and . After getting everything
together and rearranging yields the following

(r

2 1
K )z// + f—?w —ArGra‘ay — S(r - 20)0°

T —2

+ It + L 4 4nGrAtpy
1 5 T =24
+§(T—2MW T

=4rGaA*(€ — 3p)

Rearranging and Simplifying this yields

2(r — p)

r(r—2u) (26)

(

where every component except for the r component triv-
ially vanishes. Hence, for v = r, writing only the nonva-
nishing terms we have

=0, T"" + (T}, + T7, + 1§, + T8, + 20, )T + T}, T" + Ty, T% + T, T*°
2”+2“”A2+(T )A 2~’+< 2“) —2A73A
.
AV =T 1 A1 =20 _ o
2 — 4+ - A
Ges) e mag) o) o)l
N (r—2u) (24" + Av')e’e™ eA-3 _ (r 2,u)(A—|—TA ) GA- —sin?0(r — ?,u)(A—F7“14’)@473
2r r2sin20

where A’ = dA/dr.Note that we can write this as
dA  0Ad¢
=A
dr 84,0 dr oy

(28)

(

Putting this into the equation we can write for p’ as

o 2p
r—2u r(r-—

/ /

- - - - v 21
P+ 2pat) — 3pay—2pay) — —p+———71—p
) 2 r(r —2u)

2p

—(€+D) (%/ + o)) (29)



Substituting v’ and p’ we get the equation for p

2A4~ r
7= — (p+o)|arG—2L 4 Ty2 -
P == ()| 4G e

_r
rr—2u)

+ o)
(30)

Therefore togather with the equations 21} 22] [26] and [30]
we have our TOV equations.

B. TOV Equations in Massive Scalar-Tensor
Theories

We have the field equations as (see Appendix [C2])

1
Ry, =8m (Tuu — 2gWT) + 20,90, + m2<p29m,
Op = — dna()T + m?p (31)

and the same metric as before. Using a very similar route
we see that ¢t equation read

Git = — 919" 0500, + 87T} — m>” gy

2e" -2
62 :ey(r - M)¢+87TA46”,5+e”m2<,02

r

From this we can write

-2 _ 1
o= " 5 Nw + 4T A4 p + §m27’24p2 (32)

where we again defined ¢’ = 1. Now, Similarly we write
the rr equation

Gpr = _grrgopaawapw + 2(87"()0)2 + 8T — m2<,029rr

which reduces to

/

v 2u

=~ 2 2 2 A4~ L
e A p(r—2u

2 2 r
- —_— 33
"y (T - QM) (33)
after some simplification we write the equation for v as
1
vV o=rp? 4 —— [87rA413T3 —m2pr + 24 (34)
den
And again from the field equation for ¢ we can write

9" 9,0, = —ATaA*(—p + 3p) + m?¢

We calculate the left hand side just as before

_9 2
9" 0,0, :(T . M) + g —An At — mrey

2
2 4 1
+— - —’L;¢ +Ar A*prp — —mPp?rep
r r 2
2u  r—2u

+ 5t ¥

By simplifying this we can write
(r = 2p)¢" =4mr Aa(p — 3p) + r(p — p)]
+m?(r2*) + ) — 20(1 — p/r)  (35)

Finally, we again look at the stress-energy balance equa-
tion which can be written using Vg,, = 0 as

V. T =V, [(p+ p)ata” + pgi] =0
Writing only the nonzero terms we have

Vi(p+p)a'a” +p'g" =0

= Ty(p+p)a'a" + T35+ p)a'a’ +§'

. ([)—F[))(T T2,u> <2A + Av )A2+]3<T 2“>A2:0

2A

/

— 7 =—(+p)av+ ) (36)

Therefore, the equations and [36] are the TOV
equations corresponding to massive scalar field.

IV. DISCUSSION

We discussed the physical mechanism behind the spon-
taneous scalarization from [3] [B] [4] and later derived
the field equations and TOV equations for both massless
and massive scalar theories. But the problem with the
massless scalar-tensor theories is that recent observations
ruled out most of its parameter space ([6] and it also ef-
fects the whole universe and therefore it is needed to add
a mass term which is bounded as [4]

m > 10"V (37)

Again from [6] to allow neutron stars to scalarize but not
the white dwarf, bounds the compactness in a way such
that

3<-p 5108 (38)

Also mass term prevents scalarization if the following
conditions is not satisfied [4]

m <10 %V (39)

Also, since ¢ decays exponentially in massive scalar field,
it is expected that strong field of one star can induce a
scalarization in another which can be detected by gravi-
tational wave observations. 4]

V. CONCLUSION

In general, massive scalar-tensor theories are more
likely to agree with observations as discussied in section
[Vl which can cause these theories to deviate from GR
for the neutron star structures while agreeing with the
observations.
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Appendix A: Transformation of Energy Momentum
Tensor Between Einstein and Jordan Frames

We have the metric in both frames related as
Guw = A%Gu
Therefore we have the relation for the determinant as
9] = g1 A®
V- A
Using this we can show that

=2 488, =2 S, 0
Vg agh /=g 6gh g
- —2 657’"14—2

A/ =g 0g"w
=T, A*

THv

Similarly we can show that[7]

T = e g0

Appendix B: General Relativity

The Action in General relativity is given as

167TG TonGoH TOM

where S}, is the matter piece of the action and Sy is the
hilbert action and given as

Su :/d4x\/—gR
SM = /d4$\/—g£1\/j

where R is the ricci scalar. Then, we demand this varia-
tion of the action with respect to the metric to be zero.
But stationary points with respect to inverse metric is the
same as the ones with respect to inverse metric. There-
fore variation of the action with respect to inverse metric
gives

0S
_ 4 pyo_
65’-/dm(sgw5g =0
1 0SSy 0Sm
_ d4 S pr0
/ x<167rG dgH T (5g“”> g

1 6SuH
d4 S
/ v <\/ 167G 6gHv *

1 §SM> S
V=g g1

From this the equation of motions can be written as

1 68y
V=g 0gH”

where we defined

=87GT ),

o _ =2 35
g ogn

After some calculations left hand side of the equation can
be found as

(B1)

1 0SH
V=g ogr

Togather gives the Einstein Field Equations

1
=R, — iRgW =G (B2)

1
Rp,l/ - iRg;w = 87TGT;W (BS)
Or by taking the trace in an alternative version

1
RHV = SWG(THV - §Tg/,uj) (B4)

Appendix C: Field Equations in Scalar Tensor
Theories

1. Massless Scalar Field

We have the action for the scalar tensor theories for
one arbitrary coupling function A(p) as

1

A (@)gw]  (C1)
with Sy is the hilbert action, Sj; is the matter piece of
the action and is a functional of matter variables ¥, and
the Jordan-Fiertz metric §** = A%(¢) g, S, is the scalar
piece of the action and is given as

Sy /d4m\/ 9(—29"" 0,90, )

Again, we demand variation of the action with respect to
the inverse metric to vanish

0=6S5
1 68y 1 1 &S
d4 4
/ A <167TG\/759!“’+167rG~/7—gégW
1 6Su P
BN

From the first and the last term we get the same result as
in the ordinary general relativity(Eq. and Eq. .
Therefore we examine the second one. Using §(y/—¢g) =

— 3V =99,,0(g")



sfefus

7 Do+ /"GOO (0 W)]

=-2 / d'z [ - 5\/—99;4&(9“”)9"”50%6[)@ + 8H<p8y<p5(g“”)x/—g}

= / d*z\/—g [gﬂug"”aawapso - 2%@0&4 5(g")

Therefore we end up with

1 685,
\/7 5g,uz/ = g/“/g aa(papsﬂ - 2(9,Jg0(r“)y<p

Putting everything together we have the equations of
motions as

Guv = =99’ 0 00pp + 20,00, + 87GT),,  (C3)
or alternatively by taking the trace we have
R =2¢""0,90,¢ — 87GT
which leads to
1
RMV = 2(9“(,081,(,0 + SWG(THV - §Tgul’) (C4)

Now to write the equation of motion for ¢ field we look
for variation of the action with respect to ¢

0 =65

1 65y 1 1 68

d*z/—g —£

/ v (167er/ 5o T 167G V=g oo

1 6SM>

S Cs5
=5 o0 (C5)

oSy __ S,

Sa&=0 because there no ¢ dependence of Sgr. Also, &
gives the euler-lagrange equations from which we get

L ss,

V=g op

Now, we calculate the variation of Sj; with respect to

¢. Using g™ A(p)~2 = g" and T, = A(¢) 2T, and
V3 =AY /g we get

=40 (C6)

55y Sy 05"
Sp  dgmv Dy

() (%52 )

(£ ()
=V—ga(p)T

(C2)

(

Where we defined a(p) = 8111 A/d¢. Putting Eq. (C6)
and . IC7)) together in Eq. ( we have

0=46S= /d4x\/jg(167TG4D<p + HH&(@)T) dp
(C8)

Rearranging we have
Op = —4nGa(e)T (C9)

Equation [C4] together with [CY| are the equations of mo-
tions for the action (C1)).

2. Massive Scalar Field

In massive case, as we discussed earlier we have a very
similar Action as in The only difference is the addi-
tion of a mass term in S, hence

Sy /d4x\/ 9(—2g"" 0,0, p — 2m>p?)

Therefore only difference will come from the variation of
S,. First looking at the variation with respect to metric

we have using §(v/—g) = —%\/ —99u0(g"")

08, = /d4x\/fg [glwg"paago(?p(p — 20,00,

+ m2902gw] 3(g"") (C10)
Therefore, the equations of motion for metric becomes
1 2 2
R, =8m - 2gW +20,900,0 + M 9 g,
(C11)

With very similar fashion, varaiation of S, with respect
to scalar field ¢ using Euler-Lagrange equations turns
out to be

1 48,

—— 2 = 40p — 4m?p (C12)
V=g 0p

Hence the equations of motion for ¢ becomes
Op = —4na(p)T +m2p (C13)

where all things are defined as before.
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