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In this report, I will be discussing the topic that I have studied during my Internship at Inter-
national Center for Theoretical Physics (ICTP) under the supervision of Angelo Bassia and Sandro
Donadib. The main topic of this paper is the recent experimental proposals to test the quantumness
of gravity. I will start with some preliminaries and later discuss the proposed experiments. Then, I
will discuss the objections to those experiments and possible answers to those objections.

I. INTRODUCTION

An experiment aimed to measure a quantum gravita-
tional effect is proposed by Bose et.al [1] and by Marletto
and Vedral [2]. The main idea of these experiments was
to use a quantum informatic approach to show that an
entanglement created between particles due to only grav-
ity proves that gravity itself must be in a superposition.
The details of the experiment will be discussed in section
III. Later, Christodoulou and Rovelli [3] approached the
same problem in the framework of general relativity and
point out that this effect could be an evidence for the su-
perposition of spacetime geometries and adress some of
the objections in the literature [4]. We will also discuss
these topics in the sections IV and V.

II. PRELIMINARIES

In this section, I give a brief summary of tools that
are needed to grasp the quantum informatic approach to
the problem. Although, not everything in this section is
needed for the rest of the paper. I will mostly follow the
lecture notes of Angelo Bassi on Advanced Quantum Me-
chanics and Lecture notes of Michael Walter and Maris
Ozols on Quantum Information Theory as well as [5], [6]
and [7].

Before starting to the next section, we need some def-
initions. First, we denote the set of all linear operators
on from HA to HB as L(HA,HB) and L(H) if it is from
H to H. Similarly, set of all linear bounded operators are
denoted B(H) and set of all trace class operators T (H).
In a non-rigorous way, one can think of the bounded op-
erators as the maps from bounded sets to bounded sets
. And trace-class refers to the fact that operators has
a well defined trace which is not infinite. Furthermore,
if we assume a finite dimensional space, every bounded
linear operator is trace-class. Hence, we can use T (H)
and B(H) interchangeably since we deal with finite di-
mensional Hilbert Spaces.
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A. Axioms of Quantum Mechanics

1. States: Every physical system is associated with
an Hilbert Space H and states are represented by
linear, positive and trace-1 density matrices ρ

ρ =
∑
k

pk |ψk〉 〈ψk| (1)

if we have the exact information of the system, i.e.,
ρ = |ψ〉 〈ψ| it is called pure state. If it is of the
form 1, it is called statistical mixture. And recall
that we denote the set of bounded linear operators
on Hilbert space as B(H), hence ρ ∈ B(H)

2. Evolution: States evolve according to Schrödinger
Equation

i~
d

dt
ρt = [H, ρt]

3. Observables: The observables are represented by
self-adjoint operators on H

A→ Â : Â |an〉 = an |an〉

such that

Â =
∑
n

an |an〉 〈an|

4. Measurement: The probability of obtaining the
outcome an from the system ρ is P [an] and it is
given by

P [an] =
∑
k

pk| 〈an|ψk〉 |2 = 〈an|ρ|an〉

If we define a projection operator Pn = 〈an|an〉, we
can also write

P [an] = Tr[Pnρ]

Similarly, we can write the average value of an
obervable Â as

〈Â〉 = Tr[Âρ]
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5. Collapse: If we obtain the outcome an after the
measurement the state ψ collapses to |an〉, hence,
ρ collapses to |an〉 〈an| = Pn.

ρ→ PnρPn
Tr[Pnρ]

where the division by trace is to make sure that
trace is equal to one. This measurement type is
called selective. One can also define a non-selective
measurement by imposing that more than one out-
come is possible (like a measurement yields a su-
perposition of states). In that case one has

ρ→
∑
n

Tr[Pnρ]
PnρPn
Tr[Pnρ]

= PnρPn

Therefore, non-selective measurements can turn
pure states into statistical mixture.

B. Entanglement

Consider a bipartite system, i.e., total Hilbert space
H = H1 ⊗ H2. If we can not express the state of the
total system as the linear combination of the states of
the subsystems, i.e.,

ρ 6=
∑
ij

λijρ
(1)
i ⊗ ρ

(2)
j

it is called entangled state. If we can express ρ as
above, with the conditions that λij ’s are real positive

numbers and
∑
ij λij = 1 as well as ρ

(1)
i ’s and ρ

(2)
j ’s are

good density matrices, i.e., positive,linear,trace-1.

C. Quantum Operations

A quantum operation is a linear, completely posi-
tive(CP) trace nonincreasing map, i.e., quantum oper-
ations has the general form

ρ→ Λ(ρ)/Tr(Λ(ρ)) (2)

such that Tr(Λ(ρ)) ≤ 1 for any state ρ. This can also be
written as

Λ(ρ) =
∑
i

ViρV
†
i (3)

with
∑
i V
†
i Vi ≤ 1. This operation takes place with the

probability Tr(Λ(ρ)). If we have the special case where

this probability is equal to 1, i.e., if we have
∑
i V
†
i Vi = 1,

it is called quantum channel or deterministic operation
and the operators Vi’s are called Kraus Operators. Most
of the time, Quantum Operation and Quantum Channel
is used interchangeably because we assume this condition
to hold.

D. Local Operations and Classical Channel
(LOCC)

Local Operations and Classical Channel, shortly stated
as LOCC, is a paradigm in which distant parties (call
Alice and Bob) are only allowed to perform Local Oper-
ations and send each other classical information. To be
able to have a more concrete understanding, we define
subclasses of Quantum Operations:

1. C1 - Local Operations (LO): In this class of op-
erations, there is no communication between Alice
and Bob. Hence, they have the form

ΛAB = ΛA ⊗ ΛB (4)

where ρ ∈ B(HA ⊗HB).

2. C2 - one-way LOCC operations: In this class,
the information is allowed only one-way. For sim-
plicity let’s assume that it is allowed from Alice to
Bob. Then, Alice can perform any LO and send a
classical information to Bob and he can also do a
LO depending or not depending on the information.
But the opposite is not true. A one-way LOCC op-
eration ΛAB : B(HA ⊗HB)→ B(KA ⊗KB) can be
defined as

ΛAB(ρ) =
∑
ij

(IA2 ⊗WB
ij )(V Ai ⊗ IB1 )ρ(V A†i ⊗ IB1 )(IA2 ⊗W

B†
ij )

where IA1 , IB1 and IA2 are the identity operators on
hilbert spaces HA, HB and KA respectively. We

also demand the condition that
∑
V A†i V Ai = IA

and
∑
WB†
ij W

B
ij = IB hold. The j in the double

sum refers to the fact that the operations made by
Bob may depend on the outcome of the operations
of Alice but the opposite is not true.

3. C3 - two-way LOCC operations: This class of
operators are the generalized version of the previ-
ous one. Therefore, it gets complicated easily with
increasing number of indices. In this class of op-
erators, both Alice and Bob are allowed commu-
nicate, therefore both of their operations may or
may not depend on the all the previous outcomes
of the operations. A two-way LOCC operation
Λ : B(HA1 ⊗HB1 )→ B(HAn+1⊗HBn+1) can be defined

with the list of Hilbert spaces HA
1 , · · · , HA

n+1 and

HB
1 , · · · , HB

n+1 as

Λ(ρ) =
∑
i1...i2n

NAB
i1...i2nρN

AB†
i1...i2n

(5)

where ρ ∈ B(HA1 ⊗HB1 ) and V ABi1...i2n
is given by

NAB
i1...i2n := (IAn+1 ⊗W

i2n,...,i1
2n )(V

i2n−1,...,i1
2n−1 ⊗ IBn ) · · ·

(IA2 ⊗W
i2,i1
2 )(V i11 ⊗ IB1 ) (6)
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with the family of operators(
V
i2k+1,...,i1
2k+1 : HAk → HAk+1

)(
W i2l,...,i1

2l : HBl → HBl+1

)
such that for each k = 0, · · · , n−1 and l = 0, · · · , n,
we have∑
i2k+1

=(V
i2k+1,...,i1

2k+1 )(V
i2k+1,...,i1†
2k+1 ) = IAk+1∑

i2l+1

=(W
i2l,...,i1
2l )(W

i2l,...,i1†
2l ) = IBl

where IAk and IBl denotes the identity operators on
HAk and HBl k respectively.

4. C4 - Separable Operations: The definition for
the two-way LOCC operations were quite compli-
cated, luckily, however, we have another class of
operations called Separable Operations which are
more general then LOCC operations. A separable
operation is a map Λ : B(HA1 ⊗HB1 )→ B(HA2 ⊗HB2 )

Λ(ρ) =
∑
i

(Vi ⊗Wi)ρ(Vi ⊗Wi)
† (7)

with
∑
i(Vi ⊗Wi)(Vi ⊗Wi)

† = IA1 ⊗ IB1 where IA1
and IB1 are the identity operators in HA1 and HB1
respectively.

There are also another class of operations called
PPT operations which we will not discuss here.
And it is important to note the inclusion between
classes as C1 ⊂ C2 ⊂ C3 ⊂ C4. In other words,
any LOCC operation can be put into the form of
separable operations.

E. LOCC Constraint

LOCC constraint refers to the fact that LOCC oper-
ations cannot increase entanglement. In order to show
this mathematically we need some tools. Rest of the this
section will be some definitions, lemmas which will allow
us the prove LOCC constraint. We will closely follow the
(CITE)

Defintion 1 (Vectorization). Let M ∈ L(HAHB) where
HA = Cα with the orthonormal basis |a〉 and HB = Cβ
with the orthonormal basis |b〉. Then, vectorization of
M is given by

|MAB〉 :=
∑
a,b

〈b|M ||a〉
(
|a〉 ⊗ |b〉

)
∈ HA ⊗HB (8)

This definition can easily be visualized as taking every
column of a matrix and stacking them to create one large
column vector.

A very useful vectorization identity follows from the
definition is the following:

(A⊗B) |M〉 =
∣∣BMAT

〉
(9)

We already defined the entangled states and the sepa-
rable states. But we also need a measure of entanglement
to conclude how much entangled a state is. To to that
first we define the Schmidt Rank.

Defintion 2 (Schmidt Rank). Any |ψAB〉 can be written
as

|ψAB〉 =

r∑
i

si |ei〉 ⊗ |fi〉 (10)

where the si > 0, {|ei〉} ⊂ HA and {|fi〉} ⊂ HB. This
composition is called Schmidt decomposition, and r is
called Schmidt rank.

Defintion 3 (Entanglement Rank:). Let ρAB be a bi-
partite state. Then we write ρAB ∈ Entr(HA : HB) ⊂
B(HA ⊗HB) if

ρAB =
∑
i

|ψi〉 〈ψi| (11)

where each |ψi〉 ∈ (HA ⊗HB) has Schimdt rank at most
r. Then, the entanglement rank of ρAB is said to be the
r, i.e., ρAB ∈ Entr(HA : HB).

Note that the entanglement rank of a separable state is
1 and gets larger as it gets more entangled. It is a rough
way of measuring the entanglement since it can only take
integer values but we will stick with definition and show
that, the entanglement doesn’t increase with Separable
operations as we defined in subsection II D.

Theorem 1 (Separable Map constraint). Let Λ : B(HA⊗
HB) → B(HC ⊗HD) be a separable map, and let there
be a separable state with entanglement rank r, i.e., ρ ∈
Ent(HA : HB). Then entanglement rank of Λ(ρ) is also
r , i.e., Λ(ρ) ∈ Ent(HC : HD)

Proof. Recall from previous section that we can write the
action of separable map on ρ as

Λ(ρ) =
∑
i

(Vi ⊗Wi)ρ(Vi ⊗Wi)
†

=
∑
ij

(Vi ⊗Wi)(|ψj〉 〈ψj |)(Vi ⊗Wi)
† (12)

where we also plugged ρ =
∑
j |ψj〉 〈ψj |. Now we use the

identity Eq 9 to write

Λ(ρ) =
∑
ij

∣∣ViψjWT
i

〉 〈
ViψjW

T
i

∣∣ (13)

Now, since Schmidt rank of|ψi〉 is smaller than r, and
Schmidt rank of

∣∣ViψjWT
i

〉
is smaller than the Schmidt

rank of |ψi〉 we conclude that Entanglement rank of Λ(ρ)
is r.
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FIG. 1. Experimental Setup from [9]

And it follows directly from the theorem the following
corollary.

Corollary 1.1 (LOCC Constraint). Separable states re-
mains separable under the action of separable operations.
Also, from the inclusion C3 ⊂ C4, we can also say the
same for LOCC,i.e., LOCC operations leaves the separa-
ble operations separable.

III. THE EXPERIMENTS

In this section we will investigate the proposed exper-
iments to test the Quantum Nature of Gravity.

A. Early Proposals

One of the early proposal is dating back to 1945 Chapel
Hill Conference ([8]). Feynman proposed the idea to pre-
pare a mass in a superposition o two different location
and let it interact with the gravitational field. Since,
both of the branches will evolve differently due to their
position, Feynman concluded that it can be seen some
quantum interference effect with some experiments.

Later, a very similar idea came from Bahrami et.al
[9]. In it, they proposed a very similar experiment as
Feynman did. In this experiment, we again have a mass
in a superposition of two different location. However,
this time instead of putting them in a gravitational field
of massive object, we use another test particle as in figure
1.

It is important to note that these experiments are not
the same. More about these experiments will be dis-
cussed in section VI.

FIG. 2. Experiment setup from Bose et.al [1]

B. Proposed Experiment in [1],[2] (BMV effect)

The experiment relies on the fact that 2 masses m1 and
m2 each is in a superposition of two different locations,
namely left and right, interact via only gravity should
create and entanglement.

In other words, consider two different masses each is
in a superposition of left and right are separated by a
distance d as in the figure 2. Then the initial state can
be written as

|Ψ(t = 0)〉12 =
|L1〉+ |R1〉√

2
⊗ |L2〉+ |R2〉√

2

=
1

2

(
|L1L2〉+ |L1R2〉+ |R1L2〉+ |R1R2〉

)
(14)

where we used a shorthand |L1〉 ⊗ |L2〉 ≡ |L1L2〉. Also
from now on let’s assume that m1 = m2 = m Then, after
some time τ the state will evolve as

|Ψ(t = τ)〉 =
1

2

(
|L1L2〉 eiφ1 + |L1R2〉 eiφ2

+ |R1L2〉 eiφ3 + |R1R2〉 eiφ1

)
(15)

where we defined

φ1 =
Gm2τ

~d
φ2 =

Gm2τ

~(d+ ∆x)
φ3 =

Gm2τ

~(d−∆x)
(16)

Factoring out the common phase and rearranging, we get

|Ψ(t = τ)〉 =
1

2
eiφ1

[
|L1〉

(
|L2〉+ ei∆φ21 |R2〉︸ ︷︷ ︸

|α〉

)

+ |R1〉
(
ei∆φ31 |L2〉+ |R2〉︸ ︷︷ ︸

|β〉

)]
(17)

Where we defined ∆φij ≡ φi − φj . Now, we conclude
that, as long as the sates |α〉 and |β〉 are not the same,
i.e., ∆φ21 + ∆φ31 = 2nπ, the state cannot be factor-
ized. Therefore, it is an entangled state. The process of
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creating an entangled state via gravitation is started to
being called as Bose-Marletto-Vedral (BMV) effect in the
literature.

Since we showed that the state become entangled via
gravitational interaction, we now turn our attention to
the quantum information side. In [1], authors claim that
there is 2 main assumption underlying their reasoning. 1)
They assume locality and causality such that gravity is
mediated by a field and not an action at a distance and 2)
a theorem from quantum information called Local Opera-
tion and Classical Communication (LOCC) Constraint is
correct. The theorem states that, one cannot increase the
entanglement of states by using LOCC operations, and
therefore cannot create entanglement from pure states.
(for a detailed discussion see section II E). After accept-
ing this two assumption, the reasoning goes as follows:
Any external field including other masses around them
can only make Local Operations (LO) on the masses
while gravity can only create a classical channel (CC)
between them. Hence, by theorem, there should be not
a entanglement between masses. In the case of seeing an
entanglement, one concludes that ”gravity is a CC” is
a wrong statement, therefore, gravity must be a quan-
tum channel, i.e., gravity must be quantum mechanical
in nature.

IV. A RELATIVISTIC APPROACH TO BMV

A General Relativistic approach to the so called BMV
effect came from Christodoulou and Rovelli [3]. From this
point of view, they claim that this effect can be counted
as a proof of quantum superposition of different space-
time geometries. And then, they discuss the current ob-
jections to this effect in the current literature which we
will be discussing in detail in section V.

A. On the Meaning of Planck Mass

Recall that we calculated the phase different of differ-
ent branches in the section III and found as in equation
16. Now, we can equivalently write the phase difference
as

δφ =
Gm2τ

~di
= α

(
m

mplanck

)2

(18)

where di is the distances as in equation 16, α = cτ
di

and

mplanck =
√
~c/G. Looking at the equation 18, They

conclude that planck mass is the scale at which quantum
superposition of gravity (or spacetime geometries) be-
comes detectable. They say that m/mplanck determines
the physical effect and α is a large multiplicative factor
making it measurable. We discuss more on this in the
discussion part.

B. General Covariant Treatment of the BMV effect

The main idea is that we can treat the system as static
in the limit because the time τ required is much greater
than the light travel time d/c between masses which is
the time where the system is not static. Also we can
neglect the displacement of particles. Therefore, we can
just focus on the static phase and use the Minkowski
background with a perturbation.

Now, consider a the same experimental setup with 2
spherical masses apart from each other at a distance d
and their radius R� d. Then, the metric becomes

ds2 = (1 + 2Φ/c2)dt2 − d~x2 (19)

where Φ is the sum of the newtonian potentials for two
particles. And we take newtonian potential inside each
particle to be constant. Therefore, for each particle,
metric inside the particles approximately becomes (since
R� d)

ds2 =

(
1− 2Gm

Rc2
− 2GM

dc2

)
dt2 − d~x2 (20)

from this we calculate the proper time

s =

∫ t

0

ds =

∫ t

0

√
1− 2Gm

Rc2
− 2GM

dc2
dt

∼ t
(

1− Gm

Rc2
− GM

dc2

)
(21)

Since radius is much greater than the Schwarzschild ra-
dius, i.e., R� rm = 2Gm/c2, the last term is small.

Now, let’s keep this in mind and have a look at the
same experimental setup but this time rewrite the state
as

|Ψ〉 =
1

2

(
|L1L2〉+ |L1R2〉+ |R1L2〉+ |R1R2〉

)
⊗ |g〉

(22)

where we also added |g〉 as the quantum state of gravity.
Here, we don’t say anything about state of the gravity
other than the fact that it can be in a superposition. This
is the key idea for BMV effect to take place.

It is also important to point out that the metric defined
before in 19 with different values of d’s is not diffeomor-
phic to each other. In other words, the different between
spacetime metrics in different branches is not a gauge dif-
ference. This is an important fact that will be discussed
in the discussion section.

Metric in different branches is different depending on
the distance d. We will denote the metric in each branch
as gLL, gRR, gLR, gRL depending on which branch it is in.
Hence,

|Ψ〉 =
1

2

(
|L1L2gLL〉+ |L1R2gLR〉 (23)

+ |R1L2gRL〉+ |R1R2gRR〉
)

(24)
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Now, assume that the distance d is big in three of the
four branches and small in one of them (RL) so that the
last term in equation 21 becomes important only in that
one branch. Therefore, all other branches will experience
almost the same proper time while the RL branch there
will be a difference equal to the last term. Therefore time
evolution of the system will result in this branch to evolve
different than the others with the phase

δφ = −mc
2δs

~
=
Gm2τ

~d
(25)

which is exactly the same one found in [1]. And if we
bring back the particles together again, the state will be

|Ψ〉 =
1

2

(
|L1L2〉+ |L1R2〉+ eiδφ |R1L2〉+ |R1R2〉

)
⊗ |g〉

(26)

And this state is an entangled state. There it is concluded
in the paper that if we detect BMV effect then it is a
strong evidence in favor of, the existence of spacetime
superposition.

V. OBEJCTIONS

There has been some objections in the literature,
namely from Anastopoulos and Hu ([4]) stating that in
the weak field limit in which these experiments function,
the interaction is determined by scalar constraint of Gen-
eral Relativity(GR) and not by the dynamical equations.
Therefore they claim that the relevant dof’s in the exper-
iment are pure gauge and the outcome of the experiment
won’t tell us about quantum nature of gravity.

In other words, They say that Newtonian Potential is
pure gauge and the transverse-traceless perturbation are
the true dynamical dof of gravity. And since the experi-
ment does not probe this dof, it cannot test quantumness
of gravity. If one wants to show the quantum nature of
gravity, the only way is to detect gravitons.

Spin zero sector of gravitational perturbations are re-
lated to matter density, spin 1 sector is is related to vor-
ticity of matter and spin 2 sector describes the gravita-
tional waves. Hence only the spin 2 component carries
the true dof. Therefore, they object the claims of the
authors of [1] and [2].

Although, the debate seems to be settled down and the
papers ([1] and [2]) are published with 2 referees being in
favor against 1, there are still some questions remained

to be answered. More about these objections will be
discussed in section VI.

VI. DISCUSSION

In this chapter, I will briefly talk my opinion about the
everything written in this paper so far.

I think It is very important to understand what we
mean by quantumness or quantum nature of gravity.
Many of the papers in the literature avoid to give such a
definition but as far as I understand from my readings,
there is a consensus that the definition for quantumness
is to be able to be in a superposition. I believe, for now,
this is the best definition.

Now, starting from the previous proposals, in [2], au-
thors claims that the proposal of Feynman in 1945 [8] is
not enough to conclude that gravity is quantum in na-
ture. I believe this is true, because having a mass in a
superposition of two different location and putting it in
a gravitational field can only induce phase shift between
different branches. And this does not require a quan-
tum field. A classical gravitational field can also give the
same results. However, it is important to note that, as
I also mentioned in section III A, Feynman’s proposal is
not the same as in the [9]. The former only talks about
the evolution of a single mass which is in a superposi-
tion, while the latter talks about evolving two different
masses. In other words, we allow both particle to evolve
in [9]. Therefore, they become entangled, and if we make
measurement after some time, we can conclude whether
the gravity was in a superposition or not as the authors
claim. In this sense, it is no different from the [1] and [2].

I also would like to write about the objections to these
experiments in the following days. But I think it requires
some time to fully understand who is correct. It seems
like both the objections and the answers to those objec-
tions are reasonable. For now, I will leave this part like
this and hopefully return with convincing arguments. I
have also heard about the the paper [10] lately. I think
it will also have some help to settle down this debate, at
least for me.
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