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This is the term project of the course PHYS516. In this paper, I will discuss the topic

”Quantum Field Theory (QFT) in Curved Spacetime”. I will mostly follow the discussion in

Carroll(2019) Chapter 9 and Introductory Notes from Frodden and Valdés as well as lecture

notes of Tong and Jacobson and Ford . I will start with a brief review of Quantum Mechanics

with Heisenberg Picture (QM) and an introduction to QFT in in Flat Spacetime. Then, I

will generalize the idea and discuss the QFT in Curved Spacetime. Finally, I will discuss a

prediction of QFT which is the so called ’Unruh Effect’.

QUANTUM MECHANICS AND HEISENBERG PICTURE

In Classical Mechanics the state of the system is described as points in phase space which

usually written as (qi, pi). On the other hand, in Quantum Mechanics the state of the system

is described by the state vector ψ living in Hilbert Space. To move from a classical system to a

quantum mechanical system, we usually promote the functions f on phase space to the operators f̂

on Hilbert Space. The map between these to is given by the relation between the Poisson brackets

and commutators.

{, } → − i
~

[, ] (1)

This is called canonical quantization. Particularly we have

[q̂a, q̂b] = [p̂a, p̂b] = 0 and [q̂a, p̂b] = i~δba

In classical mechanics dynamics of the system is governed by Hamiltonian and Hamilton’ equa-

tions. In quantum mechanics, the dynamics of the system is again governed by Hamiltonian, but

this time there are two ways to picture the evolution of the system. These are called Schrödinger

Picture and Heisenberg Picture. Schrödinger picture represents the evolution of the system as

unitary evolution of the state vector in Hilbert Space and the state vector obeys the Schrödinger

Equation

Hψ = i∂tψ (2)
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where we took ~ = 1. Heisenberg picture however, the state is kept fixed and the observables

evolve in time obeying the Heisenberg Equation of motion

dÂ(t)

dt
= i[H, Â(t)] (3)

where A is some observable. In other words, we have the relations

|ψ〉H =U † |ψ(t)〉S

Â(t)H =UÂSU
†

where subscripts added for showing which picture we are in. It is important to note that these

different pictures are completely equivalent.

One special example to study in this framework is the simple harmonic oscillator. One way to

solve this is by introducing creation and annihilation operators â† and â as

â =
1√
2ω

(ωx̂+ ip̂), â† =
1√
2ω

(ωx̂− ip̂)

with the commutation relation

[â, â†] = 1 (4)

And Hamiltonian of the system is

Ĥ = −1

2
∂2
x +

1

2
ω2x̂2 = (â†â+

1

2
)ω

we also define the number operator n ≡ â†â which basically counts the number of exication from

the ground state when acted upon a state. Then, we can write Heisenberg Equations of Motion as

dâ

dt
=− iωâ, dâ†

dt
= iωâ†

which yields the solutions

â(t) = e−iωtâ(0), â(t)† = eiωtâ(0)†

from which we can write position and momentum operators as

x(t) = x(0)cos(ωt) +
p(0)

mω
sin(ωt)

p(t) = p(0)cos(ωt)−mωx(0)sin(ωt) (5)

from which we can calulate the expectations

〈x(t)〉 = 〈x(0)〉cos(ωt) +
〈p(0)〉
mω

sin(ωt)
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If we were to do the calculations in Schrödinger Picture, we would express the states as com-

bination of number eigenvectors: |ψ〉 =
∑

n cn |n〉. Therefore evolution would become simply

|ψ〉 =
∑

n cne
−iEnt |n〉. And if we were to calculate the expectation value 〈x〉 as

〈x〉 =
∑
m,n

〈ψn|x|ψm〉 = cnc
∗
m 〈m|x|n〉 e−i(En−Em)t

since only nonzero terms in the sum are m = n± 1, hence, we get the same results as Heisenberg

picture.

QFT IN FLAT SPACETIME

Quantum Field Theory (QFT) just like quantum harmonic oscillator, is just a quantum me-

chanical system in which we will be quantizing fields rather than a single oscillator. And there are

reasons to think that fields are more fundamental than particles. First of all, the primary reason

to introduce fields in physics is related to the fact that Laws of Nature are local. Other than that,

Special Relativity and Quantum Mechanics together implies that particle number is not conserved.

We will see this more clearly when we introduce the Unruh Effect but a more simply way to why

this is true is the Heisenberg Uncertainty Principle. We know that a particle trapped in a box with

length L has an uncertainty in its momentum as ∆p ≥ ~/L. In relativity we know that momentum

and energy are on equal footing. Therefore this implies that there is an uncertainty in energy and

when this uncertainty becomes comparable with the rest mass of the particle, particle-anti particle

pairs popping out of vacuum will be important. This happens when a particle localized into a

distance λ = ~/mc which is known as Compton Wavelength. Just like de Broglie wavelength tells

when the wavelike properties of particle becomes important, Compton wavelength tells when the

concept single point-like particle becomes vague1. Finally we know that all fundamental particles

of the same type in Standard Model are the same. Therefore, it is natural think of each particle

of the same type have the same origin, i.e., field. Therefore in this section we will be quantizing

fields, in particular, a scalar field in Minkowski Spacetime. Consider the Lagrangian

L = −1

2
ηµν∂µφ∂νφ−

1

2
m2φ2 (6)

Then, Euler-Lagrange equations yields the Klein-Gordon Equation

�φ−m2φ = 0 (7)

1 For more discussion check Tong QFT Lecture notes
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We also want to study the Hamiltonian picture, hence, we define conjugate momentum field,

π =
∂L

∂(∂tφ)
= φ̇ (8)

We also have Hamiltonian density, just like Lagrangian density we will be referring it as Hamiltonian

and it is given Legendre transformation by

H(φ, π) = πφ̇− L(φ, ∂µφ) =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2 (9)

where (∇φ)2 = δij∂i∂j . Now we would like to write down the solutions to Klein Gordon Equation.

A generic solution can be written as

φ(xµ) = φ0e
kµxµ (10)

where ω2 = k2 +m2. It can be seen clearly that there is a similarity between harmonic oscillator

solution to Klein Gordon equation. In fact, Solutions to the Klein Gordon can be thought of as

linear superposition of harmonic oscillator solution each with different frequency and this time

frequency depends on k.

Now in order to write the most general solution by constructing an orthonormal,complete set of

modes, we define an inner product expressed as an inner product over a constant time hypersurface

Σt,

(φ1, φ2) = −i
∫

Σt

(φ1∂tφ
∗
2 − φ∗2∂tφ1)dn−1x (11)

This integral is independent of Σt. To see this, consider a volume M contained in a surface

Σ = Σ1 ∪ Σ2 in Minkowski Spacetime. Then from Stoke’s Theorem∫
Σ1

dn−1xnµjµ +

∫
Σ2

dn−1xnµjµ =

∫
M
dnx∇µjµ (12)

For an arbitrary vector jµ. Letting jµ = i(φ1∂µφ
∗
2−φ∗2∂µφ1), we have ∇µjµ = i(φ∗1�φ2−φ∗2�φ1) =

0. Now, Assume Σ2 is in future of Σ1 then, nµ|Σ1 = (1, 0, . . . ) and nµ|Σ2 = (−1, 0, . . . ) Therefore

we have, ∫
Σ1

dn−1xj0−
∫

Σ2

dn−1xj0 = 0∫
Σ1

dn−1x(φ1∂tφ
∗
2 − φ∗2∂tφ1)−

∫
Σ2

dn−1x(φ1∂tφ
∗
2 − φ∗2∂tφ1) = 0

=⇒ (φ1, φ2)Σ1 =(φ1, φ2)Σ2 (13)
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Hence, the inner product is independent of the hypersurface. Now, we calculate the inner product

for two solutions

(eik
µ
1 xµ , eik

ν
2xν ) =− i

∫
Σ

(eik
µ
1 xµ∂te

ikν2xν − eikν2xν∂teik
µ
1 xµ)

=(ω1 + ω2)e−i(ω1−ω2)t

∫
Σ
ei(k1−k2)·xdn−1x

=(ω1 + ω2)e−i(ω1−ω2)t(2π)n−1δn−1(k1 − k2) (14)

This shows that inner product vanishes when wave vectors k are different. From this we can

construct an orthonormal set of mode like

fk(x
µ) =

eikµx
µ√

(2π)n−12ω
(15)

such that

(fk, fk′) = δn−1(k − k′) (16)

From the relation ω2 = k2 +m2 for each given k we have ±ω. Therefore, at this point we choose

the positive ω values only. To complete the set of modes given above we introduce the complex

conjugate f∗k which we will call negative frequency modes and fk will be the positive frequency

modes. In other words, positive modes satisfy

∂tfk = −iωfk

where negative modes satisfy

∂tf
∗
k = iωf∗k

provided ω > 0. Then, we have

(f∗k, f
∗
k′) = −δn−1(k − k′) (f∗k , fk′) = 0 (17)

f ’s and f∗’s together form a complete set which we can write any solution in terms of them.

Now, we want to quantize this field. To do that we again introduce canonical quantization just

like in (2). We promote the field and its conjugate momenta to operators in Hilbert Space with

the following commutation relations

[φ(t, x), φ(t, x′)] =0

[π(t, x), π(t, x′)] =0

[φ(t, x), π(t, x′)] =iδn−1(x− x′) (18)
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We can also expand the quantum operator field φ just like classical fields

φ(xµ) =

∫
dn−1x

(
âkAke

i(k·x−ωt) + b̂kBke
i(k·x+ωt)

)
.

where we chose ω to be positive and divide the solution into two parts corresponding to the positive

and negative roots of ω2 = k2 + m2 which corresponds to propagating modes in the k and −k

spatial directions. However, note that k→ −k leaves ω invariant, so we can write the second term

as b̂−kB−ke
−i(k·x+ωt). If we impose the hermitian condition on φ we can write it as

φ =

∫
dn−1

[
âkfk + â†kf

∗
k

]
(19)

Putting this expansion into the commutation relations give in (18) yields the following relations:

[âk, âk′ ] =0

[â†k, â
†
k′

] =0

[âk, â
†
k′

] =δn−1(k − k′) (20)

which is very similar to what we have for creation and annihilation operators in (4). This time,

however, we have infinite amount of them. Just like in the harmonic oscillator case, we can write

a state with ni exication as each with momenta ki as

|n1, . . . , ni〉 =
1√

n1! . . . ni!
(a†k1

)n1 · · · (a†ki)
ni |0〉 (21)

Also we can define a number operator each wave vector as

n̂0k = â†kâk (22)

Then, we can form a basis for the Hilbert Space known as Fock Basis from the eigenstates of the

number operator.

Now we want to express the Hamiltonian in terms of annihilation and creation operators just

as in Harmonic Oscillator. Hamiltonian can be written as

H =

∫
dn−1H =

∫
dn−1

[
1

2
φ̇2 +

1

2
(∇φ)2 +

1

2
m2φ2

]
(23)

First, investagte the φ2 term,

1

2
m2

∫
dn−1xφ2 =

1

2
m2

∫
dn−1xdn−1kdn−1k′(âkfk + â†kf

∗
k )(âk′fk′ + â†k′f

∗
k′)

=
1

2
m2

∫
dn−1k

(
1

2ω

)[
âkâ−ke

−2iωt + â†kâk + âkâ
†
k + â†kâ

†
−ke

2ωt
]

(24)
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where in the last line we Evaluated every terms in k′ and x integral by plugging in fk’s from their

definition. Similarly we can evaluate the other terms. kinetic energy term and gradient energy

term will just give factors of ω and k coming from the derivatives,

1

2

∫
dn−1xφ̇2 =

1

2

∫
dn−1k

(
ω

2

)[
− âkâ−ke−2iωt + â†kâk + âkâ

†
k − â

†
kâ
†
−ke

2ωt
]

(25)

and

1

2

∫
dn−1x(∇φ)2 =

1

2

∫
dn−1k

(
k2

2
ω

)[
− âkâ−ke−2iωt + â†kâk + âkâ

†
k − â

†
kâ
†
−ke

2ωt
]

(26)

Now, using the identity ω2 = k2 +m2 we arrived our desired result

H =
1

2

∫
dn−1k

[
â†kâk + âkâ

†
k

]
ω

=

∫
dn−1k

[
n̂k +

1

2
δn−1(0)

]
ω (27)

where we used the definition of number operator and the commutation relations (18). However, the

delta function evaluated at 0 has infinite value as well as the integral over k has infinite range. But

if we use discrete solutions we can get rid of the infinity arises from delta function. For example

we can say that [âk, â
†
k′ ] = δkk′ . This is equivalent to restricting our Spacetime to a finite volume.

But there is another infinity due to the range of our integral, k. In order to get rid of this infinity,

we must put a cutoff at some high value of k.

However, just as in Harmonic oscillator case, we can redefine our Hamiltonian such that the

ground state will give 0 energy. In other words, we can just subtract the infinity from Hamiltonian

and quantize it that way. In this way, we can define a hamiltonian as

H =

∫
dn−1kn̂kω (28)

This technique is called Renormalization.

QFT IN CURVED SPACETIME

In this section we will follow the same discussion in previous section and will generalize to

curved Spacetime. Let’s start with the Lagrangian density

L =
√
g

(
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2 − ξRφ2

)
(29)

which is almost the same as before, the only difference is the appearance of metric gµν and addition

of coupling to curvature scalar. The coupling parameterized by ξ. ξ = 0 is called minimal coupling
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and ξ = (n− 2)/4(n− 1) is called conformal coupling because it leaves the lagraningian invariant

under conformal transformations.

This time conjugate momenta is

π =
∂L

∂(∇0φ)
=
√
−g∇0φ (30)

and canonical commutation relations are

[φ(t, x), φ(t, x′)] =0

[π(t, x), π(t, x′)] =0

[φ(t, x), π(t, x′)] =
i√
−g

δn−1(x− x′) (31)

The equation of motion for the scalar field is

�φ−m2φ− ξRφ = 0 (32)

We again define an inner product over a spacelike surface Σ as

(φ1, φ2) = −i
∫

Σ
(φ1∇µφ∗2 − φ∗2∇µφ1)nµ

√
γdn−1x (33)

where γij is the induced metric and nµ is the unit normal vector on the Σ and the integral is

independent of Σ2. At this point, just like in flat spacetime we would like to introduce a set of

positive and negative frequency solutions and expand φ in terms of it. But there isn’t necessarily

a timelike killing vector, hence we may not be able to find solutions in which we can separate

time and space dependent parts. Nevertheless, we can always find a set of solutions that are

orthonormal which will not be unique. We know that the notion of number operator and Fock

vacuum depends on the choice of set. In general, there does not exist a unique vacuum state in

a curved spacetime. Therefore, the concept of particles becomes ambiguous, and the problem of

the physical interpretation becomes much more difficult. Let’s start by choosing such a set of

orthonormal solutions,

(fifj) = δij and (f∗i f
∗
j ) = −δij (34)

the index i can be continuous or discrete. For simplicity we assume discrete. Then, we can expand

the field as

φ =
∑
i

(
âifi + â†if

∗
i

)
(35)

2 the proof is similar to flat spacetime case



9

Hence, we have the following commutation relationss for âi and â†i

[âk, âk′ ] =0

[â†k, â
†
k′

] =0

[âk, â
†
k′

] =δij . (36)

Therefore, hatai and â†i are annihilation and creation operators and there is a vacuum state defined

by

âi |0f 〉 = 0 for all i (37)

Now from this vacuum state we can consturct a Fock Basis as before. And we can write a state

with ni exicatition as

|ni〉 =
1√
ni!

(â†i )
ni |0f 〉 (38)

And we define a number operator for each mode as

n̂fi = â†i âi (39)

where the subscript f’s are referring to the fact that we used the set of modes fi among many

other option. So far, the set fi seems to be working quite well. But the problem is any other set

of modes gi would also work out. For example we can expand our field in this basis

φ =
∑
i

(
b̂igi + b̂†ig

∗
i

)
(40)

The coefficients again satisfies the same commutation relations (36). And there will be a vacuum

state b̂i |0g〉 = 0. Hence, we can construct another Fock Basis and define number operator n̂gi =

ĝ†i ĝi.

Now, to see what’s going on we expand the modes in terms of each other.

gi =
∑
j

αijfj + βijf
∗
j

fi =
∑
j

γijfj + λijf
∗
j (41)

Recall that modes are orthonormal, so αij = (gi, fj), βij = −(gi, f
∗
j ). Therefore, γij = α∗ij and

λij = −βij . Hence,

gi =
∑
j

αijfj + βijf
∗
j

fi =
∑
j

α∗ijfj − βijf∗j (42)
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This transformation is known as Bogolubov Transformation and the matrices αij and β are Bogol-

ubov coefficients. Now, we can expand the field φ both in f and g modes. And if we insert the

Bogolubov Transformation into one of them we can arrive at the result giving the relation between

the operators of each mode as,

âi =
∑
j

(αjib̂j + β∗jib̂
†
j)

b̂i =
∑
j

(α∗ij âj − β∗ij â
†
j) (43)

From this relations it is easy to see that annihilation operators for one observer are not the annihi-

lation operators of the other observer. Rather, they mix both creation and annihilation operators.

Therefore, we can expect for one observer’s vacuum to have particles for another observer. Let’s

verify this explicitly. Assume a state is in f vacuum |0f 〉 in which no particles observed by an

observer in who uses the f modes, i.e., 〈n̂fi〉 = 〈0f |n̂fi|0f 〉 = 0. Now, let’s look at the same state

from an observer who uses the g mode expansion

〈0f |n̂gi|0f 〉 =

〈
0f

∣∣∣∣b̂†i b̂i∣∣∣∣0f〉

=

〈
0f

∣∣∣∣∑
j,k

(
αij â

†
j − βij âj

)(
α∗ikâk − β∗ikâ

†
k

)∣∣∣∣∣∣0f
〉

=

〈
0f

∣∣∣∣∑
j,k

βijβ
∗
ikâj â

†
k

∣∣∣∣∣∣0f
〉

=
∑
j,k

βijβ
∗
ik

〈
0f

∣∣∣∣â†kâj + δjk

∣∣∣∣0f〉
=
∑
j

βijβ
∗
ij (44)

Therefore we have

〈n̂gi〉 =
∑
j

|βij |2 (45)

In summary, vacuum in one frame may have particles in other frames. As can be seen from (42)

β coefficients measures the mixing of positive and negative modes of different observers. Hence, if

it is nonzero they will not agree on vacuum state. Although, this is not true for observers related

by a Lorentz transformation . In other words, vacuum is Lorentz invariant but the problem arises

when we have more general transformations.

At this point it is natural to ask whether our particle definition is correct. As Unruh showed

[1], particle detectors use their proper times to define positive and negative frequency modes and
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therefore the particles,

D

dτ
fi = −iωfi (46)

we use these modes to determine how many particle will a detector detect. However, this may

not be possible all over spacetime but if we consider a static spacetime, there will be a timelike

killing vector Kµ since metric components will be independent of time coordinate in some specific

coordinate. In this case d’Alembertian becomes

�f =
[
g00∂2

0 +
1

2
g00gij(∂ig00)∂j + gij∂i∂j − gijΓkij∂k

]
f (47)

Then, the equation of motion 32 can be written as

∂2
0f = −(g00)−1

[1
2
g00gij(∂ig00)∂j + gij∂i∂j − gijΓkij∂k − (m2 + ξR)

]
f (48)

where LHS is only time derivative and RHS is spatial derivatives. Hence, we can find solutions of

the form

fω(t, x) = e−iωtf̄ω(x) (49)

Now we can write, f is a positive frequency mode if

∂tfω = −iωfω, ω > 0 (50)

In coordinate invariant way, this is equivalent to

LKfω = Kµ∂µfω = −iωfω (51)

and if f is negative frequency mode if

LKf∗ω = Kµ∂µf
∗
ω = iωf∗ω (52)

UNRUH EFFECT

As discussed in the previous section, vacuum state for one observer is not necessarily a vacuum

state for another observer. Different observer uses different modes ,hence, different notion of

vacuum and particles. Consider a Schrödinger particle in a box initially at ground state. As the

box starts to accelerate, there is nonzero probability that the particle will be in an excited state.

This example is a specific example of the Unruh Effect. In this section we will investigate this

phenomenon. For simplicity we will compare two observers in flat space while one is accelerated.
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FIG. 1. Regions of Minkowski Spacetime (from Carrol)

We will also work in 2 dimension and take m = 0 and ξ = 0 for the most simple case. Therefore

the the equation of motion 32 reduces to

�φ = 0 (53)

We are in flat spacetime so the metric is simply ηµν . Consider an observer moving with constant

acceleration α, i.e., α =
√
aµaµ where a = d2xµ/dτ2. Now, it is easy to verify that the trajectory

of such an observer is

t(τ) =
1

α
sinh(ατ)

x(τ) =
1

α
cosh(ατ) (54)

From this it is easy to calculate proper accelaaraiton

aµ =
d2xµ

dτ2
= (α sinh(ατ), α cosh(ατ)) (55)

The trajoctary describes an hyperboloid asympoting to null paths as in figure (1). Now we choose

another coordinates for accelerated observer that cover the region I as

t =
1

a
f(ξ) sinh(aη) x =

1

a
f(ξ) cosh(aη) (56)

This time we have

x2 − t2 =
f(ξ)2

a2
(57)
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In other words, observer cooresponds to coordinate ξ0 has acceleration a/f(ξ0). Also, Observer

with higer acceleration is closer to origin, hence, we require f to be inreasing function and choos

f(ξ) = eaξ. In summary, metric has the form

ds2 = e2aξ(−dη2 + dξ2) (58)

with t ∈ R and x ∈ (t, inf). Region I is called Rindler Space, and an observer moving along a

constant acceleration path is called Rindler Observer.

Since metric components are independent of η we know that ∂η is a killing vector. We can write

it using chain rule as

∂η =
∂t

∂η
∂t +

∂x

∂η
∂x (59)

And we can verify that it is timelike vector in Region I

(∂η)
µ(∂η)µ = a2(−x2 + t2) < 0 (60)

Now, since we have a timelike killing vector we can use it to define our positive frequency modes

by just saying if ∂ηf = −iωt then f is positive. However, it is not easy to extend this into other

regions of spacetime.

The equation of motion takes the form in Rindler coordinates

�φ = e−2aξ(−∂2
η + ∂2

ξ )φ = 0 (61)

a plane wave gk = (4πω)−1/2e−iωη+ikξ solves this equation in Region I with ω = |k| . Apparently

since ∂ηgk = −iωgk, it is a positive frequency mode. We can easily check that,

(gk, gk′) = i

∫
(g∗k∂ηgk′ − gk′∂ηg∗k) = δ(k − k′) (62)

(g∗k, g
∗
k′) = i

∫
(gk∂ηg

∗
k′ − g∗k′∂ηgk) = −δ(k − k′) (63)

(64)

They are indeed orthonormal set.But when it comes to region IV things changes because, this

coordinates are not valid there. But this is OK, we can just define a new coordinates by changing

the sign of (56). But we don’t need to introduce new coordinates since we only define them in

their own region. In other words, when it comes to region IV we have a timelike killing vector
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∂−η = −∂η rather than ∂η. Therefore, we introduce two sets of modes as

g
(1)
k =


1√
4πω

e−iωη+ikξ, I

0, IV

g
(2)
k =


1√
4πω

e+iωη+ikξ, I

0, IV

(65)

each mode is positive frequency with respect to their timelike killing vector. Now we have two

different set of modes, Rindler and Minkowski. Therefore, just as in the previous section we need

to calculate the Bogolubov Coefficients but there is an easier way. We will find a set of modes such

that it will share the vacuum state with Minkowski vacuum. To do this we need to extend Rindler

modes to whole spacetime in terms of original Rindler modes. First we write Rindler modes in

terms of Minkowski coordinates

√
4πωg

(1)
k =e−iω(η−ξ) = aiω/a(−t+ x)iω/a

√
4πωg

(2)
k =e+iω(η+ξ) = a−iω/a(−t− x)−iω/a (66)

Notice that they behave differently. But the combination

√
4πω

(
g1
k + e−πω/ag

(2)∗
−k
)

= aiω/a(−t+ x)iω/a (67)

is well defined in both region I and IV which is the extension forg
(1)
k . By doing the same calculation

for g
(2)
k , we define a new set of normalized modes as

h
(1)
k =

1√
2 sinh(πω/a)

(
eπω/2ag

(1)
k + e−πω/2ag

(2∗)
−k
)

(68)

h
(2)
k =

1√
2 sinh(πω/a)

(
eπω/2ag

(2)
k + e−πω/2ag

(1∗)
−k
)

(69)

Therefore, we can expand the field as

φ =

∫
dk

(
ĉ(1)h

(1)
k + ĉ(1)†h

(1)∗
k + ĉ(2)h

(2)
k + ĉ(2)†h

(2)∗
k

)
(70)

We have written the modes ĥ in terms of modes g. Therefore, from our discussion of Bogolubov

transformation, we know that we can also write the operators ĉ in terms of operators b̂ as

b̂
(1)
k =

1√
2 sinh(πω/a)

(
eπω/2aĉ

(1)
k + e−πω/2aĉ

(2)†
−k
)

b̂
(2)
k =

1√
2 sinh(πω/a)

(
eπω/2aĉ

(2)
k + e−πω/2aĉ

(1)†
−k
)

(71)
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Therefore we can express the number operator in Rindler space in terms of the new operators.

In this new defined modes ĉk’s are asociated with positive frequency Minkowski modes, i.e., anni-

hilation operators, while ĉ†k’s associated with negative frequency Minkowski modes, i.e., creation

operators, Thus,

ĉ1
k |0M 〉 = ĉ2

k |0M 〉 = 0 (72)

Now we can calculate what the expected value of the number operator for a Rindler observer in

Region I as 〈
0M

∣∣∣∣n̂(1)
R

∣∣∣∣0M〉 =

〈
0M

∣∣∣∣b̂(1)†
k b̂

(1)
k

∣∣∣∣0M〉
=

1

2 sinh(πω/a)

〈
0M

∣∣∣∣e−πω/aĉ(1)
−k ĉ

(1)†
−k

∣∣∣∣0M〉
=

e−πω/a

2 sinh(πω/a)
δ(0)

=
1

e2πω/a − 1
δ(0) (73)

The delta function comes from the fact our basis modes are not square-integrable. If we were to

choose a finite spacetime the factor would be constant,

〈n(1)
R 〉 ∼

1

e2πω/a − 1
(74)

In Summary, We have shown that when an inertial observer sees a vacuum state, a non-inertial

observer will see particles. In addition, if the non-inertial observer has a constant acceleration, i.e.,

if she is Rindler observer, the particles have a very unique distribution as in (74). This is Planckian

thermal distribution with characteristic temperature called Unruh Temperature,

T =
a

2π
(75)

which is linear in proper acceleration. Putting all the constants back we get the idea of the weakness

of Unruh Effect

T = a
~

2πckB
≈ 4× 10−21a[K] (76)

I would like to thank Andrew Coates, the instructor of the course for inspiring me on learning

this subject.
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