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Relativity and Classical Field Equations

Ekrem Demirboğa

Abstract

Einstein has shown in his special theory of relativity that the time and New-
tonian 3-dimensional space are not absolute on their own. We live and give
our physical theories in a 4-dimensional Minkowski space-time. The aim
of the present study is first to learn the differential geometry of Minkowski
space-time. Then tensors as multi-linear maps on space-time will be defined
and the algebra of tensors in general will be given. Equipped with this math-
ematical background, it is planned to learn physically relevant classes of rel-
ativistic wave equations.Namely, (i) Klein-Gordon equation satisfied by real
or complex scalar fields; (ii) Maxwell equations satisfied by a real massless
vector field (i.e the photon field) and its gauge covariance; Proca equations
satisfied by massive vector fields; finally (iv) Einstein field equations satis-
fied by second rank covariant,symmetric tensor field. In order to reach this
final stage, Einstein tensor in a curved pseudoRiemannian space-time will
be constructed. It is purely geometrical and put on the left hand side of
the field equations. The right hand side of Einstein’s equations is reserved
for distributions of matter and radiation. We will discuss the construction
of conserved stress-energy-momentum tensors of the scalar and vector fields
given above.
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1 Manifolds

Introduction

In physics and mathematics, manifolds are one of the most important con-
cepts. Relativity is a theory of geometry. Therefore it requires to deal with
some ideas like manifolds,vectors,tensors,etc. In this chapter, a general sum-
mary of these topics will be given, then we will briefly discuss the special
relativity.

1.1 Definition of a Manifold

Manifolds are basically topological spaces that look like euclidean space in
local regions. In other words for each point of a manifold we have a neigh-
borhood on the manifold which resembles the euclidean space Rn. Manifolds
might have some complicated topological properties in general but it is con-
structed by smoothly sewing these euclidean local regions together. It is
important to point out that the dimension n of every local region must be
the same. Therefore we call this type of a manifold an n−manifold and
usually denote by M.

In order to give a more rigorous definition we require some other defini-
tions:

A map φ : Rn → Rm simply takes n−tuple (x1, . . . , xn) to m−tuple
(x1, . . . , xm) and can can be written as a collection of m functions φi of n
variables. If these all these functions has at least have pth derivative, then
we refer to this map as Cp. If a map can be differentiated infinitely many
times, it is called C∞.

We call two set A and B diffeomorphic if there exist a C∞ map φ : A→
B as well as an inverse φ−1 : B → A; where the map φ is called diffeomorphic.
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A coordinate chart or coordinate system is a way of expressing points
on a Manifold M belong to a small neighborhood. Technically, it is a map
φ : U → Rn such that the image of φ is open in Rn where n is the dimension
of the manifold. Basically, as in usual coordinate systems it assigns a point
in Rn for every point on a manifold. (FIGURE)

Finally, a C∞ atlas, as the name suggests, is a collection of coordinate
systems Uα, φα with the following conditions:

I Union of Uα’s are equal to M ,i.e., U covers M .

II They are smoothly sewn together. More precisely, if two charts over-
laps, Uα ∩ Uβ 6= 0, then the map (φαφ

−1
β ) takes points in φβ(Uα ∩ Uβ)

onto an open set φα(Uα ∩ Uβ), and all these maps should be C∞. This
can be easily understood from the figure.

Now we have everything we need to give a proper definition of a manifold:
a C∞ n−manifold M is a set along with a maximal atlas which contains
every possible compatible chart. Also, it is important to point out that this
definition is intrinsic, i.e., it does not require a higher dimensional space and
embedding the manifold into that space. As we will see in next chapter and
chapter 7, Spacetime is a 4-dimensional manifold and is not embedded in a
higher dimensional spaces, although, there are some other theories suggest
that.

1.2 Vectors and Tensors

To investigate the structure of a manifold, (or in particular the spacetime) in
more detail, we need to introduce concepts of scalars, vectors and tensors. A
scalar φ is a quantity that does not change when we change the coordinates.

φ→ φ
′
= φ (1.1)

Where the prime denotes the transformed coordinates.
A vector is an element of a vector space which is a set of objects satisfying

some certain axioms along with two defined operator, namely multiplication
and addition. There is two type of vectors we will be dealing with.

Consider the change of coordinates xµ → (xµ)
′

where µ = 0, 1, . . . , n
and n is the dimension of the manifold. Then, V is called a contravariant
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vector (or just vector) if it satisfies the following transformation

V µ → (V µ)
′
=
∂(xµ)

′

∂xj
V j (1.2)

And is called Covariant Vector (or Covector or Dual Vector) if it
satisfies the following transformation

Vµ → (Vµ)
′
=
∂(xµ)

∂(xj)′ V
j (1.3)

The indices placement were not arbitrary, we use upper indices for con-
travariant vectors and lower indices for covariant vectors.

The name Contravariant and covariant comes from their response to the
change in the basis vectors. For example, think of simple Cartesian coor-
dinate system. If we double the length of the basis vectors, then the com-
ponents of the vectors in the new basis will be half in size, therefore they
”contra” varied. On the other hand, since covariant vectors transform in
the opposite way, i.e., they uses the inverse transformation matrix, their size
would also be doubled up and hence ”co” varied. We will be mostly using
vectors instead of contravariant and dual vector for covariant.

However, once we introduce curvature to spacetime, the idea of vectors as
arrows pointing from one location to another (and dual vectors are usually
visualized as bunch of stacks rather than arrows.) becomes vague. It is more
appropriate to think that every vector is located at one point in spacetime.
Therefore, we come up with the idea of Tangent Space Tp of a point p. It
is the set of all possible vectors located at the point p. We may think of it as
a surface that is tangent to a 2−sphere as in figure. But This idea requires
embedding of higher dimensions, therefore it really is a better idea to think
as every vector located at one point.

(FIGURE)
We also have a dual vector space T ∗p to a tangent space Tp called Cotan-

gent Space where dual vectors live. It is the space of all linear maps from
tangent vector space Tp to real numbers R. In other words, a dual vector
ω ∈ T ∗p acts as a function which takes vector and gives a real number

ω : Tp → R (1.4)

For example, gradient of a scalar function f , denoted df is a dual vector
as we can check, it transforms according to 1.3. This notation may seem
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strange, but it will become more clear as we discuss exterior derivatives in
Chapter 5.

So far we have talked about tangent spaces and cotangent spaces but how
do we construct these spaces without an embedding to higher dimensions?
We can talk about all possible curves γ that passes through p and we can
say that tangent space is just the collection of the tangent vectors dxµ/dλ
to those curves at p. However, this approach depends on coordinate system.
In order to achieve a coordinate independent definition that we consider the
following: let F be the space of all smooth functions onM. Then, we claim
that tangent space Tp is the space of directional derivatives operators along
curves through p, i.e., instead of dxµ/dλ we use d/dλ as vectors. And as
a basis for these space, we consider the most straightforward n directional
derivatives, partial derivatives ∂µ which is called coordinate basis. Also with
this approach Transformation laws for the coordinate system becomes more
obvious

∂
′

µ =
∂xµ

∂xµ
′ ∂µ (1.5)

Tensors are just the collection of vector and dual vectors combined to-
gether using tensor product. More precisely, a tensor T of rank (l,m) is a
multilinear map from a collection of vectors and dual vectors to R

T : T ∗p × · · · × T ∗p︸ ︷︷ ︸
l

×Tp × · · · × Tp︸ ︷︷ ︸
m

→ R (1.6)

and denoted like T a1···alb1···bm where × means Cartesian product. Multilin-
earity means that tensors acts each of its components linearly. For example
if we have a rank (1, 1) tensor T, Multilinearity states that

T (aω1 + bω2, cV1 + dV2) =acT (ω1, V1) + adT (ω1, V2) (1.7)

+ bcT (ω2, V1) + bdT (ω2, V2)

Having constructed this definition, we can now say that a scalar is a (0, 0)
tensor, a vector is a (1, 0) tensor, dual vector is a (0, 1) tensor. Also it is
straightforward to show that a rank (l,m) tensor T a1···alb1···bm transforms as

T
a
′
1···a

′
l

b
′
1···b

′
m

=
∂xµ

′
1

∂xµ1
· · · ∂x

µ
′
l

∂xµl
∂xµ1

∂xµ
′
1

· · · ∂x
µm

∂xµ
′
m

T a1···alb1···bm (1.8)
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And we define a tensor product of a rank (k, l) tensor T and a rank (m,n)
tensor G as a new rank (k + m, l + n) tensor T ⊗ G where ⊗ denotes the
tensor product. It is also important ot point out that T a1···alb1···bm is just the
representation of the components of the tensor. In other words

T = T a1···alb1···bm ê(a1) ⊗ · · · ⊗ ê(al) ⊗ θ̂b1 ⊗ · · · ⊗ θ̂bm (1.9)

where ês are the basis vectors and θ̂ are the dual basis vectors. But we
usually omit the basis vectors while writing a tensor and just write it as its
components. This is also true for vectors and dual vectors.

An example of a tensor is the metric tensor which is (0,2) tensor denoted
by η in special relativity and g in general relativity for more general cases.
It is a mathematical object that measures distance. It can be thought of as
a matrix whose elements the dot product of basis vectors. Although, it has
some other deeper meanings it is enough for us to know this much for now.

1.3 Differential Forms

Differential Forms are a special class of Tensors. Simply, an anti-symmetric
(0, p) tensor is called a −p form. The space of all −p forms is denoted by Λp.
Therefore, scalars are 0-forms and dual vectors are simply one forms.

We mentioned that directional derivatives are vectors and gradients are
dual vectors. A dual vector acting on a vector should produce a real number
from definition. Therefore, looking at the action of a gradient of a scalar df
on a vector d

dλ

df
d

dλ
=
df

dλ
(1.10)

Just as partial derivatives along coordinate axes provide a basis for vectors,
gradients of the coordinate functions xµ provide a basis for dual vectors. In
general, we construct basis for cotangent space by demanding θµ(eν) = δνnu.
Hence,

dxµ(∂[ν) =
∂xµ

∂xν
= δµν (1.11)

We can expand any one form into its components as ω = ωµdxµ.
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Also Given a -p form A and a -q form B, we can construct a (p+q) form
by wedge product A∧B which means taking their antisymmetrized tensor
product:

(A ∧B)µ1...µp+q =
(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q ]. (1.12)

1.4 Integration on Manifolds

Let us introduce the levi-civita symbol defined as

ε̃µ1µ2...µn =


+1 even permutation

−1 odd permutation

0 otherwise

(1.13)

˜symbol stands to point out that it is not a tensor. Given any n× n matrix
Mµ

µ′
we can write

ε̃µ′1µ
′
2...µ

′
n
|M | = ε̃µ1µ2...µnM

µ1
µ1
· · ·Mµn

µn (1.14)

If we set Mµ

µ′
= ∂xµ

∂xµ
′ we end up with

ε̃µ′1µ
′
2...µ

′
n

=

∣∣∣∣ ∂xµ∂xµ
′

∣∣∣∣ε̃µ1µ2...µn

∂xµ1

∂xµ
′
1

· · · ∂x
µn

∂xµ
′
n

(1.15)

Hence, it transform a tensor except for the determinant factor. Objects trans-
forming this way is called tensor densities. The power of the determinant
is called the weight of the tensor density and in this case it is one. If we
multiply by |g|w/2 with a tensor density where w is the weight of the tensor
density we get a tensor. Therefore we can define a levi-civita tensor as

εµ1µ2...µn =
√
|g| ˜εµ1µ2...µn . (1.16)

Since we defined tensor densities, we can now define integrals on mani-
folds. An integral over an n dimensional region Σ ⊂ M is a map from an
n-Sform field ω to real numbers ∫

Σ

: ω → R (1.17)

Chapter 1 Ekrem Demirboğa 9
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We also need to define a volume element dnx = dx0 ∧ · · · ∧ dxn−1. But
this definition is not a tensor, it is a tensor density. Therefore we make it
into a tensor by multiplying with

√
|g|.√

|g|dnx =
√
|g|dx0 ∧ · · · ∧ dxn−1 (1.18)

In fact, if we write the volume element in explicit basis one forms, we see
that it is equal to levi-civita tensor :

ε =εµ1µ2...µndxµ1 ⊗ · · · ⊗ dxµn (1.19)

=
1

n!

√
|g| ˜εµ1µ2...µndxµ1 ∧ · · · ∧ dxµn (1.20)

=
√
|g|dx0 ∧ · · · ∧ dxn−1 (1.21)

=
√
|g|dnx (1.22)

Therefore we can write the integral of a scalar function φ in n dimensional
manifold as ∫

φ(x)
√
|g|dnx (1.23)

as well as ∫
φ(x)ε (1.24)

1.5 Review of Special Relativity

In Special relativity, we have 4 dimensional manifold called Minkowski space-
time. Minkowski spacetime is flat, i.e., no curvature exist (Although we do
not explain the proper definition of curvature, intuitively we can think of
what curvature is.). Therefore, in cartesian coordiantes, we can write the
metric η for Minkowski spacetime as

ηµν = diag(−1, 1, 1, 1) (1.25)

where diag means the diagonal elements. In other words, we can write

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 (1.26)

Chapter 1 Ekrem Demirboğa 10
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Usually, many books on SR refers to ds2 as the line element or spacetime
interval as if these dx’s represent the so called infinitesimal distances. This is
not a problem in flat spacetime. However, as we mentioned in previous chap-
ters, these dx’s are nothing but basis for cotangent vector space. Therefore
writing ηµνdx

µdxν is just expressing the metric in its components. Hence ds2

or η are both the same thing.

η = ds2 = ηµνdx
µdxν (1.27)

1.5.1 Lorentz Transformations

Let us now consider the coordinate transformation in spacetime. We are
looking for the relations between to inertial frames. This kind of transfor-
mations are called Lorentz Transformations. For example translations
which just shifts the coordinates in space or time are Lorentz Transformation.

Now, Let’s look at more general Lorentz Transformations including spa-
tial rotations and offsets by a constant velocity vector, or boosts. These are
linear transformations, hence can be tought as multiplying the coordinates
with some matrix:

xµ
′

= Λµ
′

ν x
ν (1.28)

In order to find the matrices that leaves the space-time interval (or metric)
invariant (which is the same thing as saying speed of light measured is the
same) we substitute this into space time interval and we find that

ηρσ = Λµ
′

ρ Λν
′

σ ηµ′ν′ (1.29)

If (1.29) is satisfied, that matrix is called Lorentz Transformations. For
example, a boost in the -x direction can be written as

Λµ
′
ν =


coshφ −sinhφ 0 0
−sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 (1.30)

It is obvious that boost corresponds to changing the coordinates to another
one moving with a constant velocity. Relations between coordinates are

Chapter 1 Ekrem Demirboğa 11
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t′ =tcoshφ− xsinhφ (1.31)

x′ =− tsinhφ+ xcoshφ (1.32)

from this, we can see the the point x′ = 0 is moving with velocity

v =
x

t
=
sinhφ

coshφ
= tanhφ (1.33)

By taking φ = tanh−1v we can write

t′ = γ(t− vx)

x′ = γ(x− vt) (1.34)

where γ = 1/
√

1− v2

1.5.2 Energy and Momentum

In this chapter, We’ll briefly discuss the physics in Minkowski Spacetime.
First, we introduce the four velocity of an object

Uµ =
dxµ

dτ
(1.35)

where τ is the proper time. Since dτ 2 = −ηµνdxµdxν four-velocity is auto-
matically normalized to -1.

ηµνU
µUν = −1 (1.36)

This means that four-velocity is not a velocity in space like ordinary velocity,
but a velocity through spacetime and always has the same magnitude. Since
we define it for timelike trajectories it is negative. Second, we introduce the
momentum four-vector

pµ = mUµ (1.37)

where m is the mass of the particle which is the same in all inertial frames.
From this definition, energy of a particle is E = p0. For example, for a particle
at rest p0 = m (since we take c = 1 ). For a particle moving in the x direction
with a velocity v, momentum four-vector becomes pµ = (γm, vγm, 0, 0). For

Chapter 1 Ekrem Demirboğa 12
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small v we can write p0 = m +
1

2
mv2 and as expected. We can also write

without approximation

pµpµ = −m2 (1.38)

which can also be written as

E =
√
m2 + p2 (1.39)

At this point we can also define a force four-vector similar to Newton’s second
law

fµ = m
d2

dτ 2
xµ(τ) (1.40)

For example 3 dimensional Lorentz force F = q(E + v ×B) becomes

fµ = −qUλF µ
λ (1.41)

where F is the so called Faraday Tensor and will be discussed in Chapter 3.
Momentum four-vector provides enough information for a single particle’s

energy and momentum. But we need more than that for complex systems
with many particles. We usually think such systems as fluids and define an
energy-momentum tensor T µν . It is usually defined as the flux of momentum
four-vector pµ across a surface of constant xν . From this definition it follows
that: T 00 is the flux of p0 in the x0 direction, or energy in time direction
which simply is the energy denstiy ρ. T 0i = T i0 is the momentum density
and T ij are the momentum flux or stress.

One of the most important property of this tensor is that it is conserved
which can be expressed as

∂µT
µν = 0 (1.42)

for ν = 0 equation becomes energy conservation while other values of ν
corresponds to momentum conservation. This ideas become more important
as we move into General Relativity in Chapter 6.

Chapter 1 Ekrem Demirboğa 13



2 Klein-Gordon Equations

Klein-Gordon Equation is a relativistic wave equation satisfied by real or
complex scalar fields. It is related to Schrodinger Equation. In this chapter,
the classical field equation will be discussed. Then, Klein-Gordon Equa-
tion will be derived as a classical field equation. Then its relation to the
Schrodinger equation will be studied.

2.1 Classical Field Theory

We know that in classical mechanics for a particle with coordinate q(t) we
can derive the equations of motion using the least action principle where we
define the action as

S =

∫
dtL(q, q̇) (2.1)

where L is the lagrangian and typically given as L = K − V where K is
the kinetic energy and V is the potential energy. Then, by using variational
calculus we search for the critical points in the action and end up with euler-
lagrange equations :

∂L

∂q
− d

dt

(
∂L

∂(q̇)

)
= 0 (2.2)

Similarly, in field theory instead of coordinates q(t) we have a set of spacetime
dependent fields Φi(xµ). Then we define the lagrangian L as an integral of a
Lagrange Density L over all space where L is a function of the fields and
their derivatives

L =

∫
d3xL (2.3)

14
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Therefore the action becomes

S =

∫
dtL =

∫
d4xL(Φi, ∂µΦi) (2.4)

Normally ”Lagrange Density” is called just ”Lagrangian” as we will do
throughout this paper.

In order to derive the Euler-Lagrange equations for a field, we require
action to be unchanged under small variations

Φi →Φi + δΦi (2.5)

∂µΦi →∂µΦi − ∂µ(δΦi) (2.6)

Then, we can Taylor expand the Lagrangian as

L(Φi + δΦi, ∂µΦi + ∂µδΦ
i) = L(Φi, ∂µΦi) +

∂L
∂Φi

δΦi +
∂L

∂(∂µΦi)
∂µ(δΦi)

(2.7)

Similarly we write S → S + δS where

δS =

∫
d4x

[
∂L
∂Φi

δΦi +
∂L

∂(∂µΦi)
∂µ(δΦi)

]
(2.8)

Then, we write the second term as

∂L
∂(∂µΦi)

∂µ(δΦi) = ∂µ

(
∂L

∂(∂µΦi)
δΦi

)
− ∂µ

(
∂L

∂(∂µΦi)

)
δΦi (2.9)

as a consequence of chain rule. Then, plugging this into (2.8), we end up

δS =

∫
d4x

[
∂L
∂Φi
− ∂µ

(
∂L

∂(∂µΦi)

)]
δΦi +

∫
d4x

[
∂µ

(
∂L

∂(∂µΦi)
δΦi

)]
(2.10)

But the second term is a total derivative. Therefore can be transformed to a
surface integral by Stoke’s Theorem. Since we are dealing with the variations,
we can choose variations that can vanish at boundaries. Therefore we left
with

δS =

∫
d4x

[
∂L
∂Φi
− ∂µ

(
∂L

∂(∂µΦi)

)]
δΦi (2.11)

Finally, by claiming that this integral should vanish for the critical points we
end up with the Euler-Lagrange Equation for field theory

∂L
∂Φi
− ∂µ

(
∂L

∂(∂µΦi)

)
= 0 (2.12)
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2.2 Lagrangian Formalism of Klein-Gordon

Equation

One of the simplest example of a field is real scalar field. They basically
associates a scalar value to every point in a space:

φ(xµ) : (spacetime)→ R (2.13)

So, we are trying to understand the classical mechanics of a single scalar field.
We will have an energy density as a function of spacetime which includes
kinetic energy term 1

2
φ̇2, a gradient energy term 1

2
(∇φ)2 and a potential

energy term V (φ). We can combine these three term to make a Lorentz
invariant Lagrangian L as

L = −1

2
ηµν(∂µφ)(∂νφ)− V (φ) (2.14)

analogous to L = K − V . We can derive the equation of motions from
Euler-Lagrange Equation (2.12). We have

∂L
∂φ

= −dV (φ)

dφ
∂L

∂(∂µφ)
= −ηµν∂νφ (2.15)

putting these into Euler-Lagrange equations, we end up with our equation
of motion

ηµν∂µ∂νφ−
dV

dφ
= 0 (2.16)

It is usually written as

�φ− dV

dφ
= 0 (2.17)

where we defined the operator � = ηµν∂µ∂ν which is called d’Alembertian.
Note that our metric convention is (− + ++), therefore, in a flat spacetime
this equation is equivalent to

φ̈−∇2φ+
dV

dφ
= 0 (2.18)

Chapter 2 Ekrem Demirboğa 16
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If we choose a potential of simple harmonic oscillator, i.e., V (φ) = 1
2
m2φ2

where the parameter m is the mass of the field. The reason of a field have a
mass can be understood quantum mechanically. When we quantize the field,
we find that momentum eigenstates are collection of particles each with mass
m. For now, it is simply mass. Substituting this potential we have

�φ−m2φ = 0 (2.19)

which is the Klein-Gordon Equation.

2.3 A Quantum Mechanical Approach

This approach is more physically understandable and actually how Klein-
Gordon approach the problem in the first place. We know that non-relativistic
energy of a free particle is

p2

2m
= E (2.20)

And bu quantizing this, we end up with the Schrodinger equation for a free
particle

p̂2

2m
ψ = Êψ (2.21)

where p̂ = −i~∇ and Ê = i~ ∂
∂t

. However, Schrödinger Equation is not
Lorentz Invariant. Therefore, in order to achieve Lorentz Invariant we need
to work with relativistic energy relation√

p2c2 +m2c4 = E (2.22)

But quantizing this gives troubles. Klein and Gordon, instead tried to quan-
tize the square of the energy as

[(i~∇)2c2 +m2c4]ψ = −~2 ∂
2

∂t2
ψ (2.23)

Rearranging terms yields

1

c2

∂2

∂t
ψ −∇2ψ +

m2c2

~2
ψ = 0 (2.24)

which can be written as

(� + µ2)ψ = 0. (2.25)
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3 Maxwell’s Equations

Maxwell’s equations are set of differential equations that governs the nature
of electromagnetism and relate the electric field E and magnetic field B
together. In vector calculus notation the equations are

∇ · E =ρ

∇×B− ∂tE =J

∇ ·B =0

∇× E + ∂tB =0 (3.1)

where ρ is the charge density, J is the current density and ∇× and ∇· are
the curl and divergence operators. These equations are Lorentz invariant.
In fact, this is the one of the main motivation for the development of a new
theory, namely Relativity. But the Theory of Relativity helps to improve the
Laws of Electromagnetism as much as Electromagnetism helps the Relativity
to emerge. For instance, as we will discover in General Relativity, matter
and energy cause spacetime to have some curvature, therefore, Maxwell’s
Equations require some modifications. But we will not be dealing with it in
this paper. For now, we will consider flat spacetime with Minkowski metric
η.

3.1 Covariant Form of Maxwell’s Equations

As we stated earlier, Maxwell’s Equations are Lorentz invariant. But it is
not easy to grasp it as we look at in Eq (3.1). Therefore we will try to write
down the equation in Tensor notation. First, Let’s rewrite the equations

18



Relativity and Classical Field Equations

component-wise

∂iE
i = J0

ε̃ijk∂jBk − ∂0E
i = J i

∂iB
i = 0

ε̃ijk∂jEk + ∂0B
i = 0 (3.2)

where we introduce 3−dimensional Levi-Civita symbol ε̃ with the same rules
as 4−dimensional one with one index absent. Notice that we are working in
3−dimensional euclidean space where metric is δij as well its inverse. There-
fore, lower and upper indices can be used interchangeably. Also we write J0

for charge density because we define a 4-vector Jµ = J(ρ, J1, J2, J3).
Now we introduce an antisymmetric rank (0, 2) electromagnetic field

strength tensor (sometimes called as Faraday tensor) F as

Fµν = −Fνµ =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (3.3)

Using the definition (3.3) and equation (3.2) we can construct a tensorial
formalization of Maxwell’s Equations. We can also raise the indices of the
Faraday Tensor such that

F µν = ηµσηνρFσρ =


0 +E1 +E2 +E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (3.4)

Note that F 0i = Ei and F ij = εijkBk where Latin letters run from 1 to 3
whereas Greek letters run from 0 to 3 as before. Using these two, we can
write the first two equation as

∂jF
ij − ∂0F

0i =J i

∂iF
0i =J0 (3.5)

adding two equation side by side and using the antisymmetry property of the
Faraday tensor, we can combine these two equation as

∂µF
νµ = Jν (3.6)
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Similarly for the last two equations, we can write −1
2
εijkFjk = Bi and

F0i = −Ei. Then the last two equation can be written as

∂[µFνσ] = ∂µFνσ + ∂νFσµ + ∂σFµν = 0 (3.7)

where bracket ([ ]) means antisymmetrization. It basically makes a tensor
antisymmetric by permuting the indexes between brackets. Since the tensor
F is antisymmetric, it can be written as in equation (3.7). In general, we
have written the Maxwell’s equation in tensor notation in equation (3.6)
and (3.6). Since they are tensor equations, it is clear that they are Lorentz
invariant. Usually we call (3.6) and (3.7) together as Covariant form of
the Maxwell’s equations. The name covariant here is different from the
one we had before. It refers to the transformation rules for the equation is the
same in both sides. Maxwell’s equations is also covariant in vector calculus
notation of course, however, it is just a matter of jargon that people usually
say the tensor notation is covariant because it is easy to see.

3.2 Lagrangian Formalism of Maxwell’s Equa-

tions

Another way to obtain Maxwell’s equation is to use the Lagrangian formalism
as introduced in Chapter 2 by choosing a correct Lagrangian. Before we start,
we know from classical electromagnetism that electric and magnetic field can
be expressed as

E =−∇ · φ− ∂A

∂t
B =∇× A (3.8)

where A is the vector potential and φ is a scalar field called the electric
potential. At this point, we introduce a four vector Aµ = (φ,A1, A2, A3).
With this definition using the equations (3.8) we can express the Faraday
Tensor as

Fµν = ∂µAν − ∂νAµ (3.9)

From this expression, we can easily see that, Faraday tensor is gauge invari-
ant, i.e., if we perform a gauge transformation Aµ → Aµ + ∂µf(x) it will
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remain unchanged:

(∂µAν − ∂νAµ)→ (∂µAν − ∂νAµ) + ∂µ∂νf(x)− ∂ν∂µf(x) = (∂µAν − ∂νAµ)

Fµν → Fµν + ∂µ∂νf(x)− ∂ν∂µf(x) = Fµν (3.10)

which follows from the fact that order of the partial derivatives do not matter.
We can now move forward to derive Maxwell’s equations (3.6) and (3.7) from
our new expression of Faraday tensor and using Lagrangian formalism. The
equation (3.7) can be seen easily:

∂[µFνσ] = ∂[µ∂νAσ] − ∂[µ∂σAν] = 0 (3.11)

because again the order of partial derivatives doesn’t affect the result. Equa-
tion (3.6) comes from the Euler-Lagrange equations:

∂L
∂Aν

− ∂µ
(

∂L
∂(∂µAν)

)
= 0 (3.12)

where we choose Lagrangian to be

L = −1

4
FµνF

µν + AµJ
µ (3.13)

It is easy to see that the first term of the Euler-Lagrange equation gives:

∂L
∂Aν

= Jν (3.14)

For the second term, we need to F tensor with lower indices since we are
taking derivative with respect to ∂µAν . Therefore we write the first term in
the lagrangian as

−1

4
FµνF

µν = −1

4
ηµαηνβFµνFαβ = −1

4
ησαηρβFσρFαβ (3.15)

where we also changed the dummy indices µν to σρ since we will be differ-
entiating with respect to ∂µAν . Then using chain rule we can write

−1

4

∂FσρF
σρ

∂(∂µAν)
= −1

4
ησαηρβ

[(
∂Fσρ

∂(∂µAν)

)
Fαβ + Fσρ

(
∂Fαβ

∂(∂µAν)

)]
(3.16)
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Also we have

∂Fσρ
∂(∂µAν)

=
∂(∂σAρ − ∂ρAσ)

∂(∂µAν)
= δσµδ

ρ
ν − δρµδσν (3.17)

plugging (3.17) into (3.16) we have

−1

4

∂FσρF
σρ

∂(∂µAν)
=− 1

4
ησαηρβ

[
(δσµδ

ρ
ν − δρµδσν )Fαβ + Fσρ(δ

α
µδ

β
ν − δβµδαν )

]
=− 1

4

[
(ηµαηνβ − ηναηµβ)Fαβ + Fσρ(η

σµηρν + ησνηρµ)
]

=− 1

4
[F µν − F νµ + F µν − F νµ]

=− F µν (3.18)

Combining (3.14) and (3.18) we end up with the second Maxwell’s equation
(3.6)

∂µF
νµ = Jν . (3.19)
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4 Proca Equations

Proca equation is an extended version of Maxwell’s Equations and named
after Romanian physicist Alexandru Proca. It describes a massive spin-1
field of mass m in Minkowski spacetime.

4.1 Lagrangian Formalism of Proca Equation

The Lagrangian is given as

L = −1

4
FµνF

µν +
1

2
m2Aµµ + AµJ

µ (4.1)

This is the same Lagrangian we introduced for Maxwell’s Equations with
an extra term 1

2
m2Aµµ. Therefore we just going to modify Euler-Lagrange

Equation from the previous section. We have

∂L
∂Aν

= Jν −m2Aν (4.2)

∂L
∂(∂µAν)

= −F µν (4.3)

Therefore Euler-Lagrange Equation gives

m2Aν − ∂µF µν = jν (4.4)

which can be also written as

−�Aν + ∂ν(∂µA
µ) +m2Aν = jν (4.5)

note that minus sign is due to metric convention. Hence, it is possible to see
the equation as

�Aν − ∂ν(∂µAµ) +m2Aν = jν (4.6)
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This equation is called Proca Equation. And for m = 0, it reduces to
Maxwell’s equations.
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5 Curvature

We have studied the flat spacetime special theory of relativity. But in order
to generalize the laws of physics for more general curved spacetime and to
understand general relativity, we need to study curvature. Therefore, in this
chapter, more rigours definition of curvature will be given as well as some
important concepts in differential geometry.

5.1 Exterior Derivative

Partial derivatives are essential operators for study of tensors. However,
partial derivative of a tensor are not a tensor in general. Let’s look at the
transformation of the partial derivative of a one-form

∂µ′ων′ =
∂xµ

∂xµ
′ ∂µ

(
∂xν

∂xν
′ ων

)
(5.1)

=
∂xµ

∂xµ
′
∂xν

∂xν
′

(
∂µων

)
+ ων

∂xµ

∂xµ
′ ∂µ

∂xν

∂xν
′ (5.2)

As can be seen, there is an extra term which we don’t have in tensor trans-
formation law. There we define new derivative operators which are tensors.
First one is exterior derivative. It acts on -p form fields and gives (p+1)-
form fields. Usually the symbol d is used for exterior derivative. It is defined
as

(dA)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+1 (5.3)

The idea to show the gradient with this symbol makes much more sense,
because exterior derivative of scalar is just gradient.

(dφ)µ = ∂µφ (5.4)
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5.2 Covariant Derivative

In flat spacetime partial derivatives are maps from (k,l) tensor fields to
(k,l+1) tensor fields. We would like to have a similar map for more general
cases, in other words, coordinate independent as oppose to partial deriva-
tives. To achieve this we define a covariant derivative operator ∇ defined
as

∇µV
ν = ∂V ν + ΓνµλV

λ (5.5)

the Γ symbol also known as connection coefficients in the second term is
basically the correction for partial derivatives to make them transform like
a tensor. The reason it is called a symbol is that it is not a tensor and by
demanding that covariant derivative transforms like

∇µ′V
ν
′

=
∂xµ

∂xµ
′
∂xν

∂xν
′∇µV

ν (5.6)

we can show that connection coefficients transforms like

Γv
′

µ′λ′
=
∂xµ

∂xµ
′
∂xλ

∂xλ
′
∂xν

′

∂xν
ΓνµλV

λ +
∂xµ

∂xµ
′
∂xλ

∂xλ
′
∂2xµ

′

∂xµ∂xλ
(5.7)

Hence, it is not a tensor. The second term and the extra term in partial
derivative transformation exactly cancels and therefore makes a tensor.S We
also write a general formula for a one form as

∇µων = ∂µων + Γ̃λµνωλ (5.8)

Also, It easy to check that covariant derivative obeys Leibniz rule and it is
linear. We also want to add to more properties to it: 1) it should commute
with contractions ∇µ(T λρ ) = (∇T )λµρ. 2) It should reduce to partial derivative
on scalars. With these to prorperties, it is easy to show that

Γ̃λµν = −Γλµν (5.9)

Hence, using the same connection coefficient we can write a covariant deriva-
tive formula for differential forms.

∇µων = ∂µων − Γλµνωλ (5.10)
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The name connection coefficients comes from the fact that, by differen-
tiating we move the vectors from one tangent space to another. In other
words, they simply tells the connection between tangent spaces. However, it
turns out there in general relativity the metric defines a unique connection.
In order to find it we need to add more properties to our connection. First,
let’s define a torsion tensor as

T λµν = Γλµν − Γλνµ = 2Γλ[µν] (5.11)

Be aware that difference of two different connections is in fact a tensor.
At this point we add two more properties: 1) Torsion-free Γλµν = Γλνµ. 2)
Metric compatibility ∇ρgµν . We claim that there is one unique torsion-free
connection on a manifold that is compatible with some metric. And by simple
calculation using the fact that derivative of metric is zero we can find that

Γσµν =
1

2
gρσ(∂µgνρ + ∂νgρν − ∂ρgµν) (5.12)

This specific connection which general relativity is based on is called Christof-
fel Symbol.

A useful example is the covariant divergence of a vector which can be
written as

∇µV
µ = ∂µV

µ + γµµλV
λ (5.13)

where we can write

Γµµλ =
1√
|g|
∂λ
√
|g| (5.14)

Hence,

∇µV
µ =

1√
|g|
∂µ(
√
|g|V µ) (5.15)

Using covariant divergence we can write curved spacetime version of
Stoke’s theorem on region Σ with boundary ∂Σ as∫

Σ

∇µV
µ
√
|g|dnx =

∫
∂Σ

= nµV
µ
√
|γ|d[n− 1]x (5.16)

where nmu is normal to ∂Σ and γ is the induced metric on ∂Σ.
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5.3 Geodesic Equation and Parallel Transport

Parallel Transport is the curved space generalization of keeping a vector
constant as move on a manifold. It is obvious how to keep a tensor consant
in a flat spacetime. Simple take the derivative and equate it to zero. In order
to generalize the idea we replace the derivative with covariant derivative and
define a directional covariant derivative:

D

dλ
=
dxµ

dλ
∇µ (5.17)

Then, we say that a tensor is parallel transported along a curve if the di-
rectional covariant derivative of that tensor is zero along the curve. For
example, for a vector the equation becomes

d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0 (5.18)

which is called equation of parallel transport.
Another concept is the geodesics. It is the curved space generalization

of the euclidean straight line. Alternativly, we can define it as a curve along
which the tangent vector is parallel transported. Hence we write

D

dλ

dxµ

dλ
= 0 (5.19)

or equivalently,

d2xµ

dλ
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (5.20)

This equation is called geodesic equation. Another approach is to take the
proper time functional

τ =

∫ √
−gµν

dxµ

dλ

dxν

dλ
dλ (5.21)

and find the critical points by simple variational calculus method, i.e., use
euler-lagrange equation. With a little bit of work it can be seen that it will
also lead to the same equation.
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5.4 Reimann Curvature Tensor

We know that flat space has some properties such as if we move a vector
in loop it will stay constant. This is not true in general for curved spaces.
Consider an infinitesimal parallelepiped loop defined by two vectors Aµ and
Bν. And we move a vector V σ along the loop to where it started. We say
that there should be a tensor that says how much the vector V has changed
as

δV σ = Rρ
σµνA

µBνV σ (5.22)

Where R is the Reimann Curvature Tensor. It is antysymmetric in the
last two indices since interchanging the vectors A and B gives the inverse
of the original answer. This is not a proper definition yet it is good for
understanding what really Reimann Tensor measures. The real definition
comes from the commutator of two covariant derivatives

[∇µ,∇ν ]V
ρ =∇µ∇νV

ρ −∇ν∇µV
ρ (5.23)

=(∂µΓρνσ − ∂νΓρνσ + ΓρµλΓ
λ
νσ − ΓσνλΓ

λ
µσ)V ρ − 2Γλ[µν]∇λV

ρ

=Rρ
σµνV

σ − T λµν∇λV
ρ (5.24)

where we subtittue the torsion tensor and defined

Rρ
σµν = ∂µΓρνσ − ∂νΓρνσ + ΓρµλΓ

λ
νσ − ΓσνλΓ

λ
µσ (5.25)

This is true for any connection, torsion-free or not. But we will be concerned
with Christoffel connection. Therefore, connection can be derived from met-
ric and curvature can be thought of as due to metric. Hence, looking at
the definition of the Reimann Tensor we can say that If we can write the
components of the metric as constants in some coordinate system Reimann
tensor will vanish and vice versa. Also it is important to point out that these
statements holds for simply connected regions of a manifold.

5.5 Ricci Tensor and Einstein Tensor

Ricci Tensor is obtained by taking the contraction of the Reimann Tensor

Rµν = Rλ
µλν (5.26)
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For connection other than the Christoffel connection, there are several con-
traction we can take. However, for the Christoffel connection we only ave
this one. All other contractions are either disappears or they are related to
this one.

Ricci Tensor associated with Christoffel connection is symmetric

Rµν = Rνµ (5.27)

the trace of the Ricci Tensor is the Ricci scalar:

R = Rµ
µ = gµνRµν (5.28)

Finally without giving any deeper explanation for this chapter, we define the
Einstein Tensor as

Gµν = Rµν −
1

2
Rgµν (5.29)
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6 Einstein’s Field Equations

Having equipped with the notion of curvature and all necessary mathematical
tool, we will in this chapter begin to construct a general theory of relativity
and derive the Einstein’s Equation.

6.1 Curvature and Gravity

General Relativity basically tells us how the curvature acts on matter and
manifest as gravity and how energy and momentum creates curvature and
hence determines the gravitational field. In Newtonian Physics we have the
acceleration of a body in a gravitational potential Φ as

a = −∇Φ (6.1)

And we have the Poisson’s equation that relates matter density and gravita-
tional potential as

∇2Φ = 4πGρ (6.2)

Einstein Equivalence Principle states that ”In small regions of spacetime,
the laws of physics reduce to those of special relativity and it is impossible to
detect the gravity by local experiments”. The Idea behind these statement
is that gravity is universal. Therefore it is not a force like any other, it the
fundamentalW feature pf the fabric of the spacetime where all the matter
fields propagate.

At this point what we are going to do is to generalize the laws of physics
for more general curved spacetime. To do this, all we need to do is, we write
the laws of physics in tensorial form for flat spacetime and generalize it by
using metric g instead of Minkowski metric η and using covariant derivative
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instead of partial derivatives and so on. There are some problems with this
approach but it is good enough for present purposes.

For example, an unaccelerated (freely falling) objects in flat spacetime
moves in straight lines xµ(λ) as

d2xµ

dλ2
= 0 (6.3)

writing in covariant derivative we get

d2xµ

dλ2
=
dxµ

dλ
∂ν
dxµ

dλ
→ dxµ

dλ
∇ν

dxµ

dλ
(6.4)

=
d2xµ

dλ
+ Γµρσ

dxρ

dλ

dxσ

dλ
(6.5)

Therefore, we see that free particles move along the geodesics.
Another example is the energy-momentum conservation. We had in spe-

cial relativity

∂µT
µν = 0 (6.6)

Which for curved spacetime will become

∇µT
µν = 0 (6.7)

Therefore, we can generalize our equations for more general curved space-
time. How can we say that the result describes gravity. To be satisfied with
this we can show that in Newtonian limit the gravity fits into picture. Con-
sider, slow moving particle (w.r.t speed of light), weak gravitational field (so
that it can be thought of as the perturbation to the flat space) and field is
static. since we are moving slowly we can write the geodesic equation as (we
choose the parameter λ as proper time)

d2xµ

dτ
+ γµ00

(
dt

dτ

)2

= 0 (6.8)

where Γµ00 = −1
2
gµλ∂λg00. Assuming a weak gravitation allows us the write

our metric as Minkowski metric plus some small perturbation:

gµν = ηµν + hµν (6.9)

Chapter 6 Ekrem Demirboğa 32
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where |h| � 1. Therefore to first order in h we can write

Γµ00 = −1

2
ηµλ∂λh00 (6.10)

Then geodesic equation becomes

d2xµ

dτ 2
=

1

2
ηµν∂λh00

(
dt

dτ

)2

(6.11)

µ = 0 tells us that dt/dτ is constant. And spacelike components gives

d2xi

dt2
=

1

2
∂ih00 (6.12)

which is very similar to Newton’s gravity formula. In fact if we take h00 =
−2Φ they become exactly the same. Therefore

g00 = −(1 + 2Φ) (6.13)

This shows that curvature of spacetime is actually sufficient to describe grav-
ity in the limit. Only thing left is to find the field equations.

6.2 Einstein’s Equation

We want to find an equation that replaces Poisson equation (6.2) for New-
tonian potential. For the right hand side we have a generalization of mass
density which is the energy momentum tensor T + µν. And we know that
gravitational potential should be replaces by metric tensor as in (6.13). We
need to have tensor that has second derivative of the metric in it. We may
try the d’Alembertian operator � = ∇µ∇µ, however, by metric compatibil-
ity this gives zero. But we have another tensor with a second derivative of
the metric in it which is Reimann tensor. But the indices does not much,
therefore we can use Ricci tensor and write

Rµν = αTµν (6.14)

where α is some constant. Actually, Einstein made this proposition at some
point. But there is problem with the conservation of energy-momentum. If
we want to conserve energy, i.e.

∇µTµν = 0 (6.15)
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we also need to say

∇µRµν = (6.16)

Yet this is not always true. Also, we can write from our equation as

R = αgµνTµν = αT (6.17)

this implies that

∇µT = 0 (6.18)

meaning T is constant everywhere, which is not true either. T = 0 in vacuum
and T 6= 0 in matter. Therefore, we need another guess which is of course
the Einstein tensor

Gµν = Rµν −
1

2
Rgµν (6.19)

which always satisfies ∇µGµν = 0, therefore

Gµν = αTµν (6.20)

All we need to do is to find the proportionality constant α. To de this, we
look whether this equation reduces to Poisson equation (6.2) in the limit.
For this, we consider a perfect-fluid source of energy-momentum

Tµν = (ρ+ p)UµUν + pgµν (6.21)

where U is the fluid four-velocity and ρ and p are the rest frame energy and
momentum densities. Since we consider Newtonian limit we may neglect the
pressure which becomes unimportant as the particles moves slowly relative
to that of light. Therefore,

Tµν = ρUµUν (6.22)

which is the energy-momentum tensor of a dust which in this case a massive
body. Again, in the newtoinan limit just like in (6.13) we write

g00 = −1 + h00 (6.23)
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Then, to the first order in h we get (we work in the rest frame of the body)

U0 = 1 +
1

2
h00 (6.24)

Since, we are going to plug this into (6.22) ρ is small we can simply take
U0 = 1 and U0 = −1. Then all components vanish except

T00 = ρ (6.25)

As expected, in Newtonian limit rest mass is much larger than other terms,
therefore we neglected them all. We plug this into our field equations and
get

R00 =
1

2
αρ (6.26)

We need to evaluate R0λ = R0
0λ0 to find the explicit formula. R0

000 = 0
therefore we get

R00 = Ri
0i0 (6.27)

= ∂i
[1
2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

]
(6.28)

=
1

2
δij∂i∂jh00 (6.29)

=
1

2
∇2h00 (6.30)

Hence, the field equation became

∇2h00 = −αρ (6.31)

Since h00 = −2Φ if we choose α = 8πG this equation becomes exactly the
Poisson equation (6.2). Therefore Einstein’s Equation becomes

Rµν −
1

2
Rgµν = 8πGTµν (6.32)
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7 Conclusion

In this study, we derived the classical field equations namely 1) Klein-Gordon
Equation; 2) Maxwell’s Equations; 3) Proca Equations and 4) Einstein Equa-
tions and particularly studied the subject of Relativity. After studying the
subjects like Integration on manifolds, tensors and differential forms as well
as giving a brief review of the Special Theory of Relativity in Chapter 1; and
explaining the Classical Field Theory in Chapter 2, we gave the derivation
and physical meaning of the e Klein-Gordon,Maxwell and Proca Equation.
Then, in Chapter 5 we studied the subject of differential geometry and cur-
vature allowing us the derive Einstein’s Equations of General Relativity.
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