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In this project we calculated the various type of stars’ structure in Newtonian gravity, general
relativity and alternative theories of gravity which try to surpass the general relativity. We mainly
studied White Dwarves (WDs) and then moved the Neutron Stars (NSs). We used Python for
computational work as well as some Mathematica.

NEWTON

We start considering the hydro-static equilibrium of
stars in Newtonian gravity. For a star in hydro static
equilibrium, we have the following system of ODEs

dm(r)

dr
= πr2ρ(r) (1)

dP

dr
= −Gm(r)ρ(r)

r2

wherem(r) is the mass within radius r, ρ(r) is the density
and P (r) is the pressure.

To relate the pressure P and density ρ we use the equa-
tion of state for the stellar matter (EOS)

PV = NkT =⇒ P =
k

µmH
Tρ (2)

where T is temperature mH is the mass of hydrogen atom
and µ is the average molecular weight. For the following
discussion we assume a poly-tropic EOS

P = Kργ = Kρ1+ 1
n (3)

where n is the poly-tropic index. For stars with EOS in
eq3, we can use the famous Lane-Emden Equation.

Lane-Emden Equation

Rearranging Eqs1 and differentiating gives

d

dr
(
1

ρ

dP

dr
) =

2Gm(r)

r3
− G

r2

dm(r)

dr

=
−2

ρr

dP

dr
− 4πGρ

Multiplying both sides with r2 and rearranging yields

r2 d

dr

(
1

ρ

dP

dr

)
+

2r

ρ

dP

dr
=

d

dr

(
r2

ρ

dP

dr

)
= −4Gr2ρ

dividing both sides by r2 we get the dimensional version
of Lane-Emden Equation. Therefore, by substituting ρ =

ρcθ
n or similarly P = ρ

1+ 1
n

c θn+1 where ρc is the density
of the center of the star, and scale the equation with

R = αξ (4)
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FIG. 1. Solution to the Lane-Emden Equation for n=1

where α = (n+1)Kρ
1
n

−1
c

4πG we get the Lane-Emden Equation

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
+ θn = 0 (5)

We solved the equation around ξ = 0 using Mathemat-
ica1 and found that there is two solution

θ1(ξ) =1− 1

6
ξ2 +

n

120
ξ4 + . . .

θ2(ξ) =
1

ξ
− ξ

2
+
ξ3

24
. . .

However, since the second solution diverges, it is not
a physical solution. Therefore we continue with the
first equation and we conclude that initial conditions are
θ(0) = 1 and θ′(0) = 0. Again using Mathematica2 we
solved the IVP and found that for n = 1

θ(ξ) =
sinξ

ξ

From the substitution that we made, we know that
θ = 0 ⇐⇒ ρ = 0. We expect pressure to be zero hence,
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density to be zero at the surface i.e. P (R) = ρ(R) = 0
where R is the radius of the star. Therefore we can write
θ(ξn) = 0 where αξn = R. Then we can write the the
total mass M as

M =

∫ R

0

4πr2ρ(r)dr =

∫ ξn

0

4πα3ρcξ
2θn(ξ)dξ (6)

Using Eq.5 we can substitute θn and easily evaluate the
integral

M =− 4πα3ρc

∫ ξn

0

d

dξ

(
ξ2 dθ

dξ

)
dξ

=4πα3ρc(−ξ2
nθ
′(ξn))

=4πR3ρc

(
θ′(ξn)

ξn

)
(7)

So, we derived the total mass M(Eq.7) and we have an
expression for R (Eq.4). Using these expressions and
eliminating the ρc in both expression we relate the mass
and the radius of stars

M = BR
3−n
1−n (8)

where B = 4π

(
K
G
n+1
4π

)n/n+1

ξ
1+n/n−1
n (−θ′(ξn)).

Since WDs are extremely dense objects their pressure
is dominated by a quantum mechanical effect named elec-
tron degeneracy. Therefore EOS for cold WDs are give
by

P =C[x(2x2 − 3)(x2 + 1)1/2 + 3sinh−1x] (9)

where x =
(
ρ
D

) 1
q . We cannot use Lane-Emden Equa-

tion for these kind of stars. However, we can follow the
same procedure and find an equation, modified version
of Lane-Emden Equation called Chandrasekhar White
Dwarf Equation.

Chandrasekhar White Dwarf Equation

We have the Hyrdrostatic Equlibrium Equation for a
star(Eq.1) and the relation between the density and the
pressure(Eq.9), therefore, we substitute pressure in the
Hyrdrostatic Equlibrium Equations

1

r2

d

dr

(
d
√
x2 + 1

dr

)
= −πGD

2

2C
x3

we define y2 = x2 + 1 and denote ρc = Dx3
c = D(y2

c −
1)3/2. Also we define

r = βη (10)

where β = ( 2C
πGD2 )1/2 η

yc
and finally we define y = ycφ.

Then the equation reduces to

1

η2

d

dη

(
η2 dφ

dη

)
+ (φ2 − 1

y2
c

)3/2 = 0 (11)

FIG. 2. M-R for given data

FIG. 3. fit to M-R data for low mass stars

which is called Chandrasekhar White Dwarf Equation.
The initial conditions are similar to Lane-Emden. We
have φ(0) = 1 and φ′(0) = 0 but at the surface R = βηn
we have φ′(ηn) = 1

y2c
.

M-R curve

We plotted the M-R points in figure 2 using the given
data3. Then, for the law mass stars i.e for x � 1, using
Mathematica4 we showed that Eq.9 becomes

P = K∗ρ
1+ 1

n∗ (12)

where K∗ = 8C
5D5/q and n∗ = q/(5 − q). Therefore, we

can now use Lane-Emden and Eq.8. We made a fit to
the data(figure3) and obtain the following values(in SI
units) using Eq8.

K∗ = 3144530.473379261

n∗ = 1, 458045791

q u 2.96

3 whitedwarfdata.csv
4 NewtonPartB.nb
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FIG. 4. Solution to the Lane-Emden for n =1.5

FIG. 5. Mass-ρc curve for low mass WDs

But we know from theory that q is an integer. Hence
in order to make q an integer (i.e q = 3) we take n =
1.5. Since we know the index n we can now solve the
Lane Emden equation. For n = 1.5 solution to the Lane-
Emden(figure4) gives

ξn = 3.653680580580581

θ′(ξn) = −0.20308599225966426

Since we know the ξn and θ′(ξn) we calculated the density
of the center of the star ρc for each pair of R−M using
Eq 7(Figure5).

We found the parameter n and the relation between C
andD from the low mass fit for Eq9. So, we have only one
unknown parameter D. To find the correct value of D we
did the following: We first start with an initial guess of
D = 1.7× 109 looking at the figure(5) and the fact that
x = (ρ/D)1/3 � 1 for low mass stars and rise up to unity
for others. For this initial guess we chose 20 random rhoc
values that will cover the whole R range in our data. Us-
ing the K value found we calculated the value of C. Then,
with all the parameters we solved the Chandrasekhar’s
WD Equation(Eq.11). From the solutions we calculated
the corresponding R and M values, interpolated them
using spline from scipy and calculated the error from the
original data. We repeated the same procedure for differ-
ent values of D to find the optimum value that minimizes

FIG. 6. M-R curve for WDs

the error. Eventually, we found the D and corresponding
C with an error 2.1075048042135396× 10−9 as

C = 5.380892404212922× 1021 (13)

D = 1830000000.0

K = 3144530.473379261

where the theoratical values of C and D is given as

C =
m4
ec

5

24π2~3
= 6.002332114024319× 1021 (14)

D =
mum

3
ec

3µe
3π2~3

= 1947865435.2624369

K = 3161125.6038212245

Chandrasekhar Mass Limit

Since we have all the parameters, we plotted the
whole M-R curve(figure6) As can be seen in plot(figure6)
there is a maximum mass allowed for WDs called Chan-
drasekhar Mass Limit. We approximately calculated the
value.5. We started with some random ρc values. Then
we calculated the corresponding mass for each ρc. Then
we saw that as we increase the ρc we got a NS with a
higher mass. So each time we increase the ρc we calcu-
lated the difference between the last two masses and we
saw that the difference is converging to zero as expected
and highest mass value converges to some number that
is found as

MCh = 1.3178477203482308M� (15)

We also plotted the convergence of this calculation in
figure(7) We can also theoretically calculate this limit.
Using Mathematica6 we showed that for x � 1 the Eq9
becomes

P = 2Cx4 + . . . (16)

5 Chandrasekhar.py
6 mathematica folder



4

FIG. 7. Convergence of the Highest Mass Limit

or since we know that q = 3

P = Kρ
4
3 =⇒ n = 3 (17)

where K = 2C
D4/3 . Then Using Equation 8 we can find

the Chandrasekhar Mass Limit for WDs as

MCh = B = 4π

(
K

Gπ

)3/2

ξ2
3(−θ′(ξ3)) (18)

(19)

If we put the constants from Eq.14 as well as the
solution of the Lane-Emden equation for n=3 which
are found as ξ3 = 6.926992292292292 and θ′(ξ3) =
−0.04210902023243969 we found the Chandrasekhar
Mass as

MCh = 1.45832101520284M� (20)

Which is relatively close to what we found.

EINSTEIN

We know that there is a mass limit for WDs and we
calculated the value of it. Existence of such a limit brings
the question: ”what would happen if we try to add even
more mass to WD?”. The solutions we obtain so far was
for WD at equilibrium. If a WD goes out of equilibrium
it starts to collapse and instability continuous until some
other mechanism takes place. Sometimes these collapses
can end up in big explosions and destruction of WDs
called Type Ia supernova explosions. And sometimes WD
squeezes so much that electrons and protons merges and
creates neutrons. If the electron degeneracy pressure can
obtain stability, a star made of mostly neutrons emerges.
These stars called as Neutron Stars (NS). NS usually have
a radius around 10-20 km and a few solar mass. Therefore
gravity becomes so immense that we can no longer use the
Newton’s Equations, instead we use Einstein’s General
Relativity.

FIG. 8. M-R curve for NSs

We can expect NS to behave like WD but with a non-
interacting electron model, however, neutrons in NS in-
teracts with each other. In fact, the interaction are so
complicated that we don’t know the exact EOS. There-
fore, for simplicity we will use

P = KNSρ
2 (21)

which gives qualitative behavior of NSs. And for Sim-
plicity we take K = 50

From now on, we will use the geometric units i.e. M�
as the mass unit, GM�

c2 ≈ 1477m as length unit and
GM�
c3 ≈ 4.927× 10−6s as time unit so that c = G = 1.

Tolman-Oppenheimer-Volkoff (TOV) Equations

Hydrostatic equilibrium equations are modified due
to general relativistic effects are called Tolman-
Oppenheimer-Volkoff (TOV) Equations and given as:

m′ = 4πr2ρ (22)

ν′ = 2
m+ 4πr3p

r(r − 2m)

p′ = −1

2
(ρ+ p)ν′

where ’ indicates the derivative w.r.t r and eν(r)/2 is the
time dilation factor of relativity. We solve this system
of ODEs just as in Newtonian case. We will stop when
p = 0 ⇐⇒ ρ = 0 with initial conditions m(0) = 0 and
p(0) = pc or ρ(0) = ρc. And by definition, ev(0)/2 is the
time dilation factor due to gravity at the center of the
star compared to an observer at r → ∞. So we need to
start with ν(0) that gives µ(∞) = 0. We cannot know
this in advance but it does not matter. Because adding
a constant to µ does not effect the solution of m(r) and
p(r). Therefore we will simply use µ(0) = 0.

We obtained the M − R curve(figure 8) by solving
Eqs22 for different pc’s.

But, the m(r) functions that we calculated is actually
not the rest mass of the stars. Since mass is the energy
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FIG. 9. Fractional Binding Energy - Radius curve of Neutron
Stars

in relativity and gravitational potential energy is nega-
tive; what we calculated contains the rest mass as well as
negative contribution due gravity. Therefore, in order to
find the rest mass which is called baryonic mass we need
to solve the following ODE

m′P = 4π

(
1− 2m

r
)−1/2r2ρ (23)

And we define the fractional binding energy as

∆ ≡ MP −M
M

(24)

We plotted Gravitational potential energy ∆ vs Radius
R in figure 9

Stability of Neutron Stars

Stability condition for a NS is give as

dM

dρc
> 0→ stable (25)

dM

dρc
< 0→ unstable

The reason behind these conditions are as follows. If
we squeeze the star a little bit, a stable star resist this
process since it is stable. Therefore we do positive work
which means mass increases since mass is energy in rela-
tivity. Density also increases but overall dMdρc > 0. If star
is unstable it continuous squeezing since it already wants
to go to a lower energy level. It continuous doing this till
it finds a stable equilibrium or forms a black hole.

Therefore we plotted the ρcvsM curve(figure 10) to
and find the stability region for the NSs. Then by looking
for the conditions in Eq.25 we conclude where the NSs
are stable and where they are unstable. We plotted to
M-R curve and indicate which NSs are stable in figure 11.
Also we conclude that there is a maximum mass Mmax

allowed by this EOS. From figure 11 or figure 8 we found

FIG. 10. ρcvsM Curve

FIG. 11. Stability of NSs

this value by looking at where the derivative zero with a
tolerance 10−217. The found value is

Mmax = 1.410421107619103M� (26)

Maximum K value for Neutron Stars

We take K = 50 at the beginning of our calculations
and find the Mmax(26). And we know that maximum
mass observed for a NS is 2.14M�. Therefore there is
maximum value for K = Kmax. To find this value we
plotted the maximum mass values Mmax for different
K(figure). From the curve it can be seen that around
maximum mass 2.14M� we have the K value as

Kmax ≈ 239 (27)

Since there is no matter outside the star we modify
equation 22. Outside the star i.e r > R we have m(r >
R) = M also we have p(r > R) = 0. Then equation for

7 MRcurveforNS.py



6

FIG. 12. Mmax −Kcurve

ν(r) becomes

ν′ =
2M

r(r − 2M)
(28)

Using Mathematica we showed that this integration sim-
ply gives

µ(r > R) = ln

(
1− 2M

r

)
− ln

(
1− 2M

R

)
+ ν(R)

(29)

And as we mention we can shift ν by a constant. Since
we want eν(∞) = 1 i.e. no time dilation for an observer at
infinity, we can simply remove the constant terms from
Eq29 which yields

ν̄(r > R) =

(
1− 2M

r

)
(30)

which also satisfies eν̄(∞) = 1.

BEYOND EINSTEIN

Wave Equation

A massless real Klein Gordon field obeys the wave
equation

�φ = 0 =⇒
(
− ∂2

∂t2

)
(31)

If we assume spherical symmetry and if we are interested
in space-time of a NS Modified Wave equation in curved
spacetime becomes

squareφ = 0

= − 1√
|g(r)|

∂

∂t

[
e−ν̄
√
|g(r)| ∂φ

∂t

]
+

1√
|g(r)|

∂

∂r

[(
1− 2m(r)

r

)√
|g(r)|∂φ

∂r

]
(32)

We reduce this equation to first order as follows

∂tΦ = ∂r(f(r)Π) (33)

∂tΠ =
1

r2
∂r(r

2f(r)Φ) (34)

where we defined

Φ ≡ ∂rφ (35)

Π ≡ 1

f(r)
∂t

f(r) ≡ eν̄(r)/2

(
1− 2m(r)

r

)1/2

In order to have a smooth physical solutions we need to
impose the following boundary conditions

Φ(0) = ∂rΠ = 0 (36)

lim
r→∞

Φ→ 1

r
(37)

lim
r→∞

Π→ 1

r
(38)

with the following initial conditions

φ(0, r) = 10−3e−r
2/2 (39)

φ̇(0, r) = 0 (40)

We discretize the domain using Leap-Frog Scheme for
advection equation.

Φn+1
j = Φn−1

j + λ((fj+1Πn
j+1)− (fj−1Πn

j−1)) (41)

Πn+1
j = Πn−1

j + λgj((
1

g
fΦ)nj+1 − (

1

g
fΦ)nj−1) (42)

Then just by using Implicit Euler Method we calcu-
lated the φ

φnj+1 = φnj + ∆rΦnj+1 (43)

Then, we plotted the wave φ(t, r) to see how it evolves in
time in figure 13. As can be seen, the initial wave changes
its amplitude as it moves. It decreases and increases
again

In a certain class of alternative theories of gravity
named scalar-tensor theories, the wave equation for the
scalar is modified as

�φ = 4πβe2βφ2

(ρ− 3p)φ (44)

Therefore we modified our Leap-frog scheme in equa-
tion42

Πn+1
j = Πn−1

j + λgj((
1

g
fΦ)nj+1 − (

1

g
fΦ)nj−1) (45)

+48πe−12φ2
j (ρj − 3pj)φ

n
j ∆t (46)

and we got the following result
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FIG. 13. Solution to wave equation φ(t, r) FIG. 14. Solution to wave equation φ(t, r) with additional
term

FIG. 15. Side view of the figure 14

As can be seen in plots, after adding the term in Eq.44,
φ(t, r) grows and reaches an almost stable configuration
not changing in time.
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